Длина боковой стороны х ( см ) длина основания ( х + 2 ) см 2х + ( х + 2 ) = 32 3х = 30 х = 10 ( см ) одна из длин боковой стороны 10 + 2 = 12 ( см ) длина основания
ВасильевнаСергей
16.04.2020
Я все думала, как объяснить. Попробую все же. У трапеции есть большее и меньшее основания, они параллельны, а боковая сторона трапеции - это секущая. Внутри образовывается два угла (внутренние односторонние). Из-за того, что трапеция равнобокая(равнобедренная), то в сумме они дают 180°, как и с другой стороны. Меньший угол берётся за х, а больший - за (х+30°). Составляется уравнение.(можно брать 360°, можно 180°). х+х+30=180 2х=150 х=75 Следовательно меньший угол = 75° Больший= 75°+30°=105° или 180°-75°=105°
anastasiavilina
16.04.2020
ΔАВС- равнобедренный.Пусть АВ=ВС =а. ВЕ⊥ АС=10 см, DC⊥АВ=12 см. Найти R окр.,описанной около Δ СDB. ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы) S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1) S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2) Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3) Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ² х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100 Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒ 5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000 а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите стороны равнобедренного треугольника , если его периметр равен 32 см , а основание на 2 см больше боковой стороны
длина основания ( х + 2 ) см
2х + ( х + 2 ) = 32
3х = 30
х = 10 ( см ) одна из длин боковой стороны
10 + 2 = 12 ( см ) длина основания