Дан прямой параллелепипед АВСDА1В1С1D1, основанием которого является ромб АВСD. Угол ВАD=30º, АВ=18, ВВ1=12.
Найти площадь AB1C1D.
––––––––––
В прямом параллелепипеде все ребра перпендикулярны основанию, а грани - прямоугольники.
В четырехугольнике AB1C1D стороны В1С1и АD равны как стороны оснований параллелепипеда,
АВ1=DС1 - диагонали равных прямоугольников. ⇒
АВ1С1D - параллело1грамм,т.к. его противоположные стороны равны и параллельны.
Площадь AB1C1D равна произведению АD и высоты, проведенной к АD.
Высота ромба BH - проекция наклонной В1Н на плоскость ромба.
ВН ⊥ АD ⇒
по теореме о 3-х перпендикулярах В1Н⊥ АD и является высотой АВ!С1D
По т.Пифагора из ⊿ В1ВН
B1H=√(B1B²+BH²)
В ромбе высота ВН противолежит углу ВАD=30º
ВН=АВ*sin30º=18*0,5=9
B1H=√(144+81)=15
S (AB1C1D)=15•18=270 (ед. площади)
Поделитесь своими знаниями, ответьте на вопрос:
Нижнее основание равнобедренной трапеции равно 20 см длина боковой стороны 17 см. периметр трапеции 58 см. Найти площадь трапеции
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Поэтому h²=9·16=144
h=12
Из треугольников. на которые высота поделила искходный треугольник, по теореме Пиагора найдем катеты:
1)9²+12²=225
√225=15
2)16²+12²=400
√400=20
Катеты равны 15см и 20 см,
гипотенуза 9+16=25 см
Можно применить для решения другую теорему.
Катет прямоугольного треугольника есть среднее пропорциональное между
гипотенузой и проекцией этого катета на гипотенузу.
Найдем гипотенузу:
9+16=25 см
Пусть меньший катет будет х.
Тогда его проекция - 9см:
х²= 9·25=225
х=15 см
Больший катет пусть будет у:
у²=25·16=400
у=20 см