По признаку параллельности прямых, если внутренние накрест лежащие углы при прямых а и b и секущей с равны, то эти прямые параллельны. Значит, прямые а и b параллельны. Это раз.
Второе. Из условия параллельности прямых а и в вытекает равенство углов 3 и 5, которые тоже будут внутренними накрест лежащими уже при параллельных а и b и секущей с, и уже по свойству параллельных прямых a и b и секущей с следует ∠3=∠5
2)∠2=∠6, ∠1=∠5; ∠4=∠8; ∠3=∠7- указаны пары соответственных углов при параллельных а и b и секущей с. Поэтому по свойству соответственных углов данные углы равны.
3) ∠4+∠5=180°; ∠3+∠6=180°, это сумма внутренних односторонних при параллельных а и b и секущей с. Сумма их равна 180° по свойству внутр. односторонних.
Подводим итог. Сначала доказали параллельность прямых а и b при секущей с по признаку параллельности прямых, а затем для решения 1),2),3) воспользовались свойствами указанных углов при параллельных прямых а и b и секущей с.
B2. Дан ΔABC, точка M — середина стороны AB, точка N — середина стороны BC, = 60. Найти .
MN || AB, MN = AB ⇒ ∠BMN = ∠BAC ⇒ ΔBMN подобный ΔBAC.
ответ: = 80 ед. кв.
B3. AK — биссектриса ΔABC, АВ = 4, ВК = 2, КС = 3. Найти периметр ΔABC.
Биссектриса угла делит противоположную сторону на отрезки, пропорциональные прилегающим сторонам:
P = AB+AC+(BK+CK)
P = 4+6+(2+3) = 15
ответ: Периметр ΔАВС равен 15.
B4. Площадь прямоугольного ΔABC равна 360 см², АС:ВС = 3:4. Из середины гипотенузы восстановлен перпендикуляр КМ. Найти площадь ΔMKC.
BK = CK = BC
∠ABC = ∠KMC ⇒ ΔCKM и ΔCAB подобны по двум углам и пропорциональной стороне.
ответ: = 160 см².
Поделитесь своими знаниями, ответьте на вопрос:
Упереправа паром который может перевозить не более 3 пассажиров. однажды на нём через реку с левого берега на правый решили переправиться коза и 4 козлёнка: 3 чёрных и 1 белый. шустрые козлята сами перепрыгивают на паром к козе но не более 2. по этому заранее не известно какого они будут цвета. расскажи как им побыстрее переправиться на другой берег если коза которая сама перевозит своих козлят решила оставлять на другом берегу или 1 козлёнка или 2 козлят но только 1 цвета.