Обозначим пирамиду МАВС.
Боковые ребра пирамиды наклонены под одинаковым (45°) углом к плоскости основания.
Значит, их проекции равны радиусу описанной окружности правильного треугольника, а вершина пирамиды проецируется в центр О ее основания.
Боковые ребра с высотой пирамиды образуют равнобедренный прямоугольный треугольник .
В ∆ МАО угол МАО= 45° (по условию). Поэтому высота МО пирамиды равна радиусу АО описанной окружности.
Радиус описанной окружности находят по формуле R=а/√3
R=АО=12:√3=12√3:3=4√3
МО=АО=4√3
Поделитесь своими знаниями, ответьте на вопрос:
Вравностороннем треугольнике abc медианы bk и am пересекаются в точке o. найдите .угол аок
Найти: угол АОК
Решение:
1) В равностороннем треугольнике медиана является высотой и биссектриссой, следовательно, угол ОАК = углу АКО = 60 / 2 = 30º (свойство углов равностороннего треугольника)
2) Сумма углов треугольника равна 180º, следовательно, угол АОК = 180 - угол ОАК - угол АКО = 180 - 30 - 30 = 120º
ответ: 120º