olimp201325
?>

Впрямоугольном треугольнике abc внешний угол при вершине b равен 112, угол c- острый. медиана ao пересекает сторону bc в точке о.найдите угол аос

Геометрия

Ответы

Shishkinna2002
Дано: 
ΔАВС-прямоугольный;
∠КВС - внешний;
∠КВС = 112°
∠С - острый;
АО - медиана
Найти ∠АОС

Решение.
1) ∠КВС - смежный с углом ∠АВС.
Сумма смежных углов равна 180°.
∠КВС + ∠АВС = 180°
Отсюда , находим величину ∠АВС.
∠АВС = 180° - 112° = 68°.
∠АВС = 68°  - острый.

2) По условию ∠С - острый.
Значит, ∠А - прямой
∠А = 90°

3) Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
∠А + ∠С = ∠КВС
90° + ∠С = 112°
°С = 112° - 90°
∠С = 22°

4) АО - это медиана, проведенная к гипотенузе.
Используем ее основное свойство, согласно которому медиана, проведенная к гипотенузе равна половине гипотенузы.
Получается, что 
АО = ОВ = ОС

5) В равнобедренном ΔАОС против равных сторон АО=ОС лежат равные углы:
∠ОАС = ∠С  = 22°

6) Сумма всех углов треугольник равна 180°.
Для ΔАОС  эта сумма выглядит так:
∠ОАС + ∠С + ∠АОС = 180°
22° + 22° + ∠АОС = 180°
∠АОС = 180° - 44°
∠АОС = 136° 

Впрямоугольном треугольнике abc внешний угол при вершине b равен 112, угол c- острый. медиана ao пер
gabramova
                                   обозначим
А - (см) - катет 1, против известного угла
Б - (см) - катет 2, соприкасается с известным углом
С - (см) - гипотенуза

1) Определить значение тангенса угла ТАН (известный угол)

2) Определить длину неизвестного катета через тангенс ТАН (известный угол) = А / Б
- если известен катет (А) лежащий против известного угла, то находишь катет Б
Б = А / ТАН (известный угол)
- если известен прилежащий катет (Б) к известному углу, то находишь катет А
А = Б * ТАН (известный угол)

3) Определить по теореме Пифагора длину гипотенузы (С) - С^2 = А^2 + Б^2,
откуда С = корень квадратный из ( А^2 + Б^2)

4) Определить ПЕРИМЕТР = А+Б+С (см)

5) Определить ПЛОЩАДЬ треугольника равную половине произведения его катетов. т. е. S = ( 1/2 х А х Б ) (кв. см)
apetrov13
1) Расположим куб в системе координат так, как показано на рисунке. Точка А - совпадаем с началом координат. Тогда координаты  вершин
А(0;0;0) ;  В(0;1:0) ;  С(1; 1; 0)  ;   D(1; 0; 0) ;  В₁(0;1;1)
Координаты точки М (1; 1/2; 1/2)
Координаты векторов
\overrightarrow{AM}=(1;
 \frac{1}{2}; \frac{1}{2} ), \\ \overrightarrow{B _{1}D 
}=(1-0;0-1;0-1)=(1;-1;-1) \\ \overrightarrow{AM}\cdot \overrightarrow{B 
_{1}D} =1\cdot1+ \frac{1}{2}\cdot(-1)+ \frac{1}{2}\cdot(-1)=0   
Скалярное произведение равно 0, значит векторы ортогональны, прямые AM и B₁D перпендикулярны
Найдем координаты середины отрезка В₁D  - точки  K
x
 _{K}= \frac{x_B _{1}+x_D }{2}= \frac{0+1}{2}= \frac{1}{2}, \\ y _{K}=
 \frac{y_B _{1}+y_D }{2}= \frac{1+0}{2}= \frac{1}{2}, \\ z _{K}= 
\frac{z_B _{1}+z_D }{2}= \frac{0+1}{2}= \frac{1}{2}.
K(1/2; 1/2;1/2)
Найдем координаты середины отрезка АМ - точки Е
x
 _{E}= \frac{x_A +x_M }{2}= \frac{0+1}{2}= \frac{1}{2}, \\ y _{E}= 
\frac{y_A +y_M }{2}= \frac{1+ \frac{1}{2} }{2}= \frac{1}{4}, \\ z _{E}= 
\frac{z_A+z_M }{2}= \frac{0+ \frac{1}{2} }{2}= \frac{1}{4}.
E=(1/2; 1/4:1/4)
EK=
 \sqrt{(x_K-x_E) ^{2}+(y_K-y_E) ^{2} +(z_K-z_E) ^{2}} = \\ =\sqrt{( 
\frac{1}{2} - \frac{1}{2} ) ^{2}+( \frac{1}{2} - \frac{1}{4} ) ^{2} +( 
\frac{1}{2} - \frac{1}{4} ) ^{2}}= \sqrt {0+ \frac{1}{16}+\frac{1}{16} 
}= \sqrt{ \frac{1}{8} }= \frac{1}{2 \sqrt{2} }= \\ = \frac{ \sqrt{2} 
}{4}
ответ. 1) прямые АМ и В₁D перпендикулярны, угол между ними 90°.2) расстояние между серединами отрезков АМ и В₁D  равно\frac{ 
\sqrt{2} }{4}

Задача 2. ( см. рис. 2)
В грани ОХZ - квадрат, все стороны которого 1. Диагональ квадрата ОВ имеет длину √2 и легко находится по теореме Пифагора 1²+1²=2²
В прямоугольном треугольнике АВО  угол АВО равен 30°, угол АОВ равен 90°, так как ось оу перпендикулярна плоскости ОХZ.
В прямоугольном треугольнике против угла в 30° катет в два раза меньше гипотенузы. Пусть ОА=y, тогда АВ=2y
По теореме Пифагора АВ²=АО²+ВО²
(2y)²=y²+(√2)²  ⇒  3y²=2    ⇒y^{2} = \frac{2}{3}\Rightarrow y= \sqrt{ \frac{2}{3} }
ответ.A( \sqrt{ \frac{2}{3} };0;0)

Задача 3.
Так как векторы а и b коллинеарны, то их координаты пропорциональны.
Вектор a  имеет координаты (6k; 8k;-7,5k), где k- коэффициента пропорциональности
Так как угол между векторами a   и j  -  тупой, значит их скалярное произведение отрицательно.
Координаты вектора j  - (0;1:0)
Найдем скалярное произведение

 \overrightarrow{a}\cdot 
\overrightarrow{j}=6k\cdot0+8k\cdot1+(-7,5k)\cdot0=8k
Так как k<0, то к=-2
ответ. Вектор a    имеет координаты (6·(-2); 8·(-2);-7,5·(-2)=(-12; -16; 15)

Решить, ! 1. в кубе abcda1b1c1d1 длина ребра равна 1. m - центр грани dd1c1c. используя метод коорди

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Впрямоугольном треугольнике abc внешний угол при вершине b равен 112, угол c- острый. медиана ao пересекает сторону bc в точке о.найдите угол аос
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

vera4
lazareva
zibuxin6
annayarikova
elena-novikova-1992
baxirchik
sergeykirushev
srkushaev
fshevxuzheva313
milenaochirova01017424
AOS2015
Lapushkin1988
Vuka91
Владислав1246
dmitrij-sp7