Объяснение:
№6
1) NP = 10 - диаметр => радиус r=10/2 = 5
Рассмотрим ∆ KOP = р/б: OK=OP = r = 5 =>
=> <a = <OKP = 60° Сумма всех углов треугольника = 180° => третий угол равен 180-(60+60) = 60° => ∆KOP - равносторонний, правильный треугольник, и
KP= 5
2) Т.к все эти 3 угла равны между собой, а по рисунку мы видим, что они расположены ровно в половине окружности, т.е их сумма равна 180° =>
3x=180°
x=60° каждый угол. Возвращаясь к 1-вой задачи, мы видим равносторонний правильный треугольник со сторонами 12/2 = 6 => KP= 6.
3) не будем что-то там копать, просто рассмотрим ∆AOC - прямоугольный
по Т.П.: AC=√(16-4)=√12
рассмотрим ∆ ACN - прямоугольный
По Т.П.: AN= √(12+4) = √16 = 4
4) Рассмотрим ∆OAC - прямоугольный
< OAC=30° => по катет напротив угла в 30° равен половине гипотенузы: CO= AO/2 = 6/2 = 3
NC= 6-3 = 3
№9
P= *сумма длин всех сторон*
BN=BK;NK=AP;KC=CP
P= 6+4 + 4+6 + 12 = 32
Угол C = 90 градусов.
Угол AKC = 60 градусов
KC = 4 см
Если угол AKC = 60 градусов, то из Теоремы о Сумме Углов треугольника найдем угол CAK:
CAK = 180 - (90+60) = 30 градусам.
Треугольник CAK - прямоугольный.
По свойству прямоугольного треугольника, напротив угла в 30 градусов (угла CAK), лежит катет равный 1/2 от гипотенузы.
т.е AK = CK * 2 = 8 см.
Если угол A равен 60 градусов, а угол CAK = 30 градусов, то угол KAB треугольника AKB равен 60 градусов - угол CAK = 60 - 30 = 30 градусов.
Угол AKB = 180 градусов - угол AKC (по теореме о смежных углах) = 180 - 60 = 120 градусов.
Угол KBA треугольника AKB по теореме о сумме углов треугольника, равен:
180 - (KAB + AKB) = 180 - (120 + 30) = 30 градусам.
У треугольника AKB углы при основании равны м-у собой.
По этому признаку его можно считать равнобедренным.
Его боковые стороны равны:
AK=KB=8 см.
Сторона треугольника BK равна 8 см.
Поделитесь своими знаниями, ответьте на вопрос:
Дано треугольник а б ц угол а равен 20 градусов угол c меньше угла b в 7 раз a) найти угол b и угол c b)сравнить ab и bc