Mikhail1369
?>

Диагональ выпуклого четырехугольника авсд пересекаются в точке о причем со=о а аво=сдо докажите что авсд параллелограмм

Геометрия

Ответы

ank9809
Треугольники ABO и CDO равны по двум сторонам и углу между ними. А углы ABO и CDO равны по условию и как накрест лежащие.

Диагональ выпуклого четырехугольника авсд пересекаются в точке о причем со=о а аво=сдо докажите что
Kateshaeva
Начерти тетраэдр SABC. Проведи высоту SO. Точка О является центром вписанной и описанной окружности, поскольку в тетраэдре все основания - правильные треугольники. Тебе нужно найти высоту тетраэдра. ЕЕ найдем из треугольника SOB, где ОВ - радиус описанной окружности. И находится он по формуле R = a/√3, где а - сторона треугольника.
ОВ = 8/√3 см.
По теореме пифагора высота OF =  √ (64 - 64/3) = 8√2/√3 см
Ортогональной проекцией боковой грани является равнобедреннй треугольник, основание которого 8 см, а высота равна высоте тетраэдра.
Поэтому чертишь отрезок 8 см и со средины отрезка проводишь перпендикуляр равный высоте тетраэдра, которую мы вычислили. Соединяешь вершины и почучаешь ортогональную проекцию.
ЕЕ площадь:
S = 1/2 * 8 * 8√2/√3 = 32√2/√3 см^2
Если не нравятся корни в ответах, то калькулятор, хотя обычно ответ принято оставлять в такой форме.     
Anait_Natalya451
Рисунок без буквенных обозначений (кроме C,O,M), обозначишь, если нужно как угодно, хотя всё понятно и так.
Для удобства и быстроты всей писанины введём буквенные обозначения a-сторона основания, l- апофема, h- высота основания. Эти три величины потребуются для всего вычисления.
МО=3, как катет, лежащий против угла в 30°
Для Δ-ка, лежащего в основании медианы, биссектрисы, высоты совпадают, а точка их пересечения О- является центром основания.
Далее вспоминаем свойство медиан Δ-ка:
Медианы треугольника пересекаются в одной точке, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
Поэтому l=3MO=3\cdot3=9
Теперь находим a:
a^2=( \frac{a}{2})^2+9^2\\ \\a^2= \frac{a^2}{4}+81\\ \\4a^2=a^2+324\\
3a^2=324\\a^2=108\\a=6 \sqrt{3}

S_{OCH}= \frac{ah}{2}= \frac{6 \sqrt{3}\cdot9}{2}=27 \sqrt{3}\\ \\ S_{6OK.}=3 \frac{al}{2}=3 \frac{6 \sqrt{3}\cdot6}{2}=54 \sqrt{3}

S_{n.}= S_{OCH}+ S_{6OK.}=27 \sqrt{3}+54\sqrt{3}=81 \sqrt{3}\ cm^2

...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)
Вправильной треугольной пирамиде апофема равна 6 см, наклонена к плоскости основания под углом 60*.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Диагональ выпуклого четырехугольника авсд пересекаются в точке о причем со=о а аво=сдо докажите что авсд параллелограмм
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Ильдар-Кугай
ГусенковФролова1121
kovalenko262
vypolga1347
Бегун-Марина
KseniGum9
akopsiroyan
galustyanvitaly4842
vettime625
yusinelnik8
staskamolbio5152
M19026789436
bondarenkoss
Екатерина1979
soa8690