Ромб ABCD, окружность проходит через точки A, B, C
AK = 5 см; КС = 1, 4 см ⇒ АС = АК + КС = 5 + 1,4 = 6,4 см
У ромба диагонали перпендикулярны и точкой пересечения делятся пополам : AC⊥BD; AO=OC = AC/2 = 6,4 /2 = 3,2 см; BO=OD.
AK⊥BD и делит хорду BD пополам ⇒ AK - диаметр окружности.
ΔABK - прямоугольный, так как сторона AK является диаметром описанной окружности.
Высота треугольника, проведенная из прямого угла на гипотенузу, есть среднее геометрическое проекций катетов на гипотенузу :
BO² = AO·OK = AO·(AK-AO) = 3,2·(5-3,2) = 3,2·1,8 = 5,76 = 2,4²
BO = 2,4 см
ΔAOB образован диагоналями, прямоугольный. Теорема Пифагора
AB² = AO² + BO² = 3,2²+2,4² = 10,24+5,76= 16 = 4²
AB = 4 см
ответ: сторона ромба равна 4 см
сделай рисунок
точка А над плоскостью
отрезок ВС в плоскости
треугольник АВС равнобедренный, потому что AB=AC
угол < BAC=60 ГРАДУСОВ
тогда два других равны, каждый по (180-60)/2=60
следовательно треугольник АВС -равносторонний (все стороны равны)
для простоты пусть их длина AB=BC=AC=b
ТЕПЕРЬ
проекция на плоскости-
это прямоугольный равнобедренный треугольник А1ВС, у которого
ВС-гипотенуза ВА1 = СА1 -катеты (они тоже равны)
это следует из равенства треугольников ВАА1 и САА1 (по двум сторонам и углу)
дальше по теореме Пифогора СВ^2=BA1^2+CA1^2 , отсюда ВА=СА=b/√2
cos< A1BA =A1B/AB=b/√2/b=1/√2=√2/2
это значит < A1BA = 45 град
тоже самое для угла < A1CA
ответ < A1BA = < A1CA=45 град
Поделитесь своими знаниями, ответьте на вопрос:
Вравностороннем треугольнике вписана окружность с центром o и радиусом 2, 2 м. найдите сторону треугольника.