Треугольник ADC = ABE.
Объяснение:
Треугольник ABD - равнобедренный, значит, угол ABD = ADB.
И в треугольнике углы ABD + ADB + BAD = 180°.
Но углы ABD + DBE + нижний B = 180°, причем ABD = ADB = нижнему B.
Отсюда BAD = DBE = 180° - 2*ABD
При этом углы BAD = DAC, значит, ACD = DEB.
Следовательно, треугольники ADC и BDE подобны по трем углам.
Теперь рассмотрим треугольники ADC и ABE.
Стороны AB = AD, углы DAC = BAE, ACD = AEB, ADC = ABE.
Эти треугольники равны по стороне и двум углам, прилежащим к ней.
Всё!
По одному из свойств касательных, проведённых из одной точки, отмеченные лучи являются биссектрисами углов ∠CBА и ∠EDC соответственно; если углы ∠АВС и ∠CDЕ являются равными, то и образованные биссектрисами углы тоже равны (∠ЕDО=∠ОDС=∠СВО=∠ОВА); получаем ΔDОВ с равными углами ∠ОDВ=∠DВО; что значит, что ΔDОВ - равнобедренный; DO=ВО;
Радиус, проведённый в точку касанияПо свойству такого радиуса проведённый отрезок ОС будет перпендикулярен прямой ВD; те OC - высота ΔDOВ; по свойству равнобедренного треугольника OC является и медианой; значит, СD=СВ;
Отрезки касательныхПо свойству касательных, проведённых из одной точки, отрезки ВС, ВА и DC, DЕ касательных попарно равны (те ВС=ВА и DC=DЕ); мы доказали, что DС=ВС; значит, ВС=ВА=DC=DЕ, ч.и.т.д.
№2Обратные теоремы действенны - нужно доказать тоже самое, только в обратную сторону. Поэтому напишу вкратце.
Если АВ=ВС=CD=DЕ, то при ОС⊥ВD ОВ=ОD (св-ва р/б Δ); тогда при ∠ОDВ=∠DВО и биссектрисах DO и ВО (∠ЕDО=∠ОDС и ∠СВО=∠ОВА) ∠ЕDО=∠ОDС=∠СВО=∠ОВА, ч.и.т.д.
Поделитесь своими знаниями, ответьте на вопрос:
Help me вершины угла cek провели луч em причем угол cem=6углу mek . чему равен угол cem?
66°
Объяснение:
Дано: ∠СЕК=77°; ∠СЕМ=6∠МЕК. ∠СЕМ-?
Пусть ∠МЕК=х°, тогда ∠СЕМ=6х°, что в сумме составляет 77°
х+6х=77
7х=77
х=11
∠МЕК=11°, ∠СЕМ=11*6=66°