У октаэдра 8 граней - равносторонних треугольников.
Площадь полной поверхности правильного октаэдра с длиной ребра a равна S = 8*(a²√3/4) = 2√3a².
Приравняем заданному значению: 18√3 = 2√3a², a² = 9, а = 3.
Нашли длину ребра: а = 3.
Объем равен удвоенному объему правильной четырехугольной пирамиды . Основанием пирамиды является квадрат со стороной a, а высота пирамиды равна длине отрезка AO.
АО = √(a² - (a√2/2)²) = √(a² - (2a²/4)) = a/√2.
Объём V = 2*((1/3)*a²*(a/√2)) = a³√2/3.
Подставим а = 3.
Тогда V = 3³√2/3 = 9√2.
1.Пусть х - ∠ 1, тогда 2х - ∠2 угол.
Сумма острых углов прямоугольного треугольника равна 90°
х + 2х = 90
3х = 90
х = 30°
30° - ∠1
∠2 = 30 × 2 = 60°
ответ: 60°; 30°.
2. Прямоугольный треугольник - треугольник, у которого один угол прямой (то есть равен 90°.
Осталось найти ещё два острых.
Пусть х - ∠1, тогда х - 18 - ∠2
Сумма острых углов прямоугольного треугольника равна 90°
х + (х - 18) = 90
2х = 108
х = 54
54° - ∠1
54 - 18 = 36° - ∠2
ответ: 36°; 54°; 90°
3.Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> Гипотенуза = 6 × 2 = 12 см
ответ: 12 см
4. Сумма острых углов прямоугольного треугольника равна 90°
А так как треугольник равнобедренный => ∠1 = ∠2 = 90 ÷ 2 = 45°
Один угол прямой в прямоугольном треугольнике => ∠3 = 90°
ответ: 45°; 45°; 90°.
5. Сумма острых углов прямоугольного треугольника равна 90°
=> ∠А = 90 - 60 = 30°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> АВ = 6 × 2 = 12 см
ответ: 12 см
6. Если катет равен половине гипотенузы, то напротив лежащий угол равен 30°
=> ∠А = 30°
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠В = 90 - 30 = 60°
ответ: 60°.
Поделитесь своими знаниями, ответьте на вопрос:
Треугольник abc угол а меньше угла в на 80 градусов, а внешний угол при вершине а больше внутреннего угла при вершине b в 2 раза. найдите внутренние угол abc
Угол А=угол В-80
180-угол А=2*(180-угол В)
В итоге угол А =20
Угол В=100
Угол с=60