1.Точка С - середина отрезка АВ. Найдите координаты точки А, если В(3;4), С(2,1) 2.Найти расстояние между точками А(1; 2) и В( - 3; 4) 3.Определить вид треугольника, вершины которого А(- 3; - 1), В(- 1; 5),С(5; 3)
Объяснение:
1)х(А)=2х(С)-х(В) , х(А)=2*2-3=1 ,
у(А)=2у(С)-у(В) , у(А)=2*1-4=-2 , А(1; -2)
2)АВ=√(4²+2²)=√20=2√5.
3)А(- 3; - 1), В(- 1; 5),С(5; 3)
АВ=√(4+36)=√40 , ВС=√(36+4)=√40 ⇒ΔАВС-равнобедренный , т.к. АВ=ВС
АС=√(64+16)=√80. Проверим т.обратную т. Пифагора АВ²+ВС²=40+40=80 и АС²=80 ⇒ΔАВС-равнобедренный , прямоугольный.
d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁ ), (х₂;у₂ ) -координаты концов отрезка.
Теорема, обратная теореме Пифагора : если квадрат длины стороны треугольника равен сумме квадратов длин двух других сторон, то такой треугольник прямоугольный.
Поделитесь своими знаниями, ответьте на вопрос:
Основа піраміди прямокутний трикутник з гіпотенузою 24 см, знайти її висоту, якщо кожне бічне ребро 13 см
Высота, опущенная на гипотенузу, связана с катетами прямоугольного
треугольника соотношением:
1/a²+1/b²=1/h² или h²=a²*b²/(a²+b²) или h²=a²*b²/с².
Или h=a*b/c.
В нашем случае h=10*24/26=120/13.
Тогда площадь трапеции равна S=(4+22)*120/2*13=120cм².
ответ:S=120cм².
P.S. Заметим, что площадь трапеции S=(BC+AD)*h/2 равна площади прямоугольного треугольника АСЕ, так как высота у них одинакова, а основание (гипотенуза) треугольника равна сумме оснований трапеции:
Sace=AE*h/2=(BC+AD)*h/2. Таким образом, можно было не находить высоту трапеции, а площадь ее найти как половину произведения диагоналей трапеции (катетов треугольника), то есть
S=AC*BD/2=10*24/2=120см².
Или найти площадь треугольника АСЕ (равную площади трапеции ABCD) по формуле Герона (для любителей корней):
S=√[p(p-a)(p-b)(p-c)]=√(30*20*6*4)=120см².