Объяснение:
78. Рассмотрим ∆АВД и ∆СВД.
У них: 1) ВД — общая;
2) угол АДВ = углу СДВ (по условию);
3) АД= СД (по условию);
Значит, ∆АВД=∆СВД (по двум сторонам и углу между ними).
ч.т.д.
79. Рассмотрим ∆АВД и ∆СВД.
У них: 1) ВД - общая.
2) угол АДВ = углу СВД (по условию);
3) АД=ВС (по условию).
Значит, ∆АВД=∆СВД (по двум сторонам и углу между ними).
86. Рассмотрим ∆АВД и ∆СВД.
У них: 1) ВД - общая;
2) угол АВД = углу СВД (по условию);
3) угол ВДА = углу ВДС (по условию);
Значит, ∆АВД=∆СВД (по стороне и прилежащим к ней углам).
87. Рассмотрим ∆АВД и ∆СВД.
У них: 1) ВД - общая;
2) угол АВД= углу СДВ (по условию);
3) угол АДВ = углу СВД (по условию);
Значит, ∆АВД=∆СВД (по стороне и прилежащим к ней углам)
78. ΔADB = ΔCDB по двум сторонам (AD = CD, а также общая сторона BD) и углу между ними (∠ADB = ∠CDB), то есть по первому признаку равенства треугольников.
79. ΔADB = ΔCDB по двум сторонам (AD = BC, а также общая сторона BD) и углу между ними (∠ADB = ∠CBD), то есть по первому признаку равенства треугольников.
82. ΔACM = ΔKBM по двум сторонам (BM = MC, AM = MK) и углу между ними (∠BMK = ∠AMC, так как эти углы вертикальные), то есть по первому признаку равенства треугольников. Рисунок к задаче на фото.
86. ΔADB = ΔCDB по стороне (общая сторона BD) и двум прилежащим углам (∠ABD = ∠CBD, ∠ADB = ∠CDB), то есть по второму признаку равенства треугольников.
87. ΔADB = ΔCDB по стороне (общая сторона BD) и двум прилежащим углам (∠ABD = ∠CDB, ∠ADB = ∠CBD), то есть по второму признаку равенства треугольников.
Поделитесь своими знаниями, ответьте на вопрос:
Нужна . биссектриса угла a параллелограмма abcd пересекает сторону bc в точке k, bk=4 см и kc=3 см.найдите стороны параллелограмма. лучше в подробностях.
Дано АВСД - параллелограмм
АВ=СД ВС=АД (противоположные стороны равны)
АВIIСД ВСII АД (противоположные стороны параллельны)
АК-биссектриса угол ВАК=уголКАД (делит угол пополам)
ВК=4см КС=3см ВС=ВК+КС
Найти АВ СД ВС АД
Решение
Биссектриса угла А образует треугольник АВК углы КАД и ВКА - накрест лежащие углы при параллельных прямых. А так как ВАК=КАД, то и
уголВАК=уголВКА (можно просто запомнить, что биссектриса угла параллелограмма отсекает равнобедренный треугольник) .
Углы при основании равны треугольник равнобедренный.
В треугольнике АВК АВ=ВК=4см
АВ=СД=4 см ВС=4+3=7 ВС=АД=7
ответ АВ=СД=4 ВС=АД=7