МАМОНОВА-андрей
?>

Треугольник со сторонами 3 см, 4 см и 5 см согнули по его средним линиям и получили модель тетраэдра. тогда площадь каждой грани тетраэдра равна…

Геометрия

Ответы

Тихонова

 Средняя линия треугольника  соединяет середины двух сторон треугольника, параллельна и равна половине  третьей стороны. Средние линии делят исходный треугольника на 4 равных ( см. рисунок). Треугольник, образованный средними линиями треугольника, подобен исходному ( по равенству соответственных углов, образованных при пересечении параллельных средней линии и стороны треугольника секущей – стороной исходного треугольника). Коэффициент подобия k=1/2.  Треугольник со сторонами 3,4, 5 - египетский, т.е. прямоугольный. Его площадь - половина произведения катетов. S=3•4:2=6 см²

     Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Если исходный треугольник АВС, а середины его сторон К, М, Н, то Ѕ(КМН)=1/4•Ѕ(АВС)=1,5 см²

 Каждый такой треугольник - грань развёртки тетраэдра. Площадь грани - 1,5 см²


Треугольник со сторонами 3 см, 4 см и 5 см согнули по его средним линиям и получили модель тетраэдра
Анна егорович526
1. Диагональ осевого сечения делит квадрат на два равнобедренных прямоугольных треугольника с острыми углами в 45°
H=4√2·sin45°=4
Диаметр основания
D(основания)=Н=4
R=D/2=2
V=πR²H=π2²·4=16π
В ответе 16π:π=16
2.
V₁:V₂=πR²₁H₁:πR²₂H₂=3²·5:5²·3=3:5=0,6
3.
Диагональ осевого сечения делит прямоугольник на два равных прямоугольных треугольника с острыми углами в 30° и 60°.
Катет, против угла в 30°( высота цилиндра) равен половине гипотенузы 4/2=2
Диаметр основания по теореме Пифагора
D= √(4²-2²)=√12=2√3
Радиус основания R=D/2=√3
V=πR²H=π(√3)²·2=6π
В ответе 6π:π=6
4) S(бок. цилиндра)=2π·R·H
2π·R·H=2π
R·H=1
D=1  ⇒ 2R=1  ⇒ R=1/2
H=2
V=πR²H=π(1/4)·2=(1/2)π
В ответе (1/2)π:π=1/2=0,5
filippovev1
Треугольники EAB  и FAD подобны, поэтому EB/FD=AB/AD. Аналогично, треугольники BAK и DAL подобны, поэтому BK/DL=AB/AD. Значит EB/FD=BK/DL
С другой стороны треугольники EBC и LDC подобны, поэтому EB/DL=BC/CD. Аналогично, треугольники BKC и DFC подобны, поэтому BK/FD=BC/CD. Значит EB/DL=BK/FD.
Перемножим полученные равенства EB/FD=BK/DL и EB/DL=BK/FD. Находим, что EB²/(FD·DL)=BK²/(DL·FD). После сокращения, EB²=BK², т.е. EB=BK. Отсюда и из равенства EB/FD=BK/DL следует, что и  FD=DL.
Все подобия здесь по двум углам в силу парллельности прямых EK  и FL.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Треугольник со сторонами 3 см, 4 см и 5 см согнули по его средним линиям и получили модель тетраэдра. тогда площадь каждой грани тетраэдра равна…
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

зырянов_Юрьевна378
vladai2
PivovarovaIlina1437
mado191065
kush-2640
vladimirdoguzov
Segyn1218
Naumenkova-Ivanov
sharovaeln6
aleksvasin
Gradus469
ruslanchikagadzhanov
kukoleva
Pavlovna-Golovitinskaya378
Tatgri