slava-m-apt
?>

1. в окружности с центром o ac и bd – диаметры. центральный угол aod равен 130∘. найдите вписанный угол acb. ответ дайте в градусах. 2. окружность с центром в точке o описана около равнобедренного треугольника abc, в котором ab=bc и ∠abc=177∘. найдите величину угла boc. ответ дайте в градусах. 3. прямая касается окружности в точке k. точка o – центр окружности. хорда km образует с касательной угол, равный 7∘. найдите величину угла omk. ответ дайте в градусах. 4. прямая касается окружности в точке k. точка o – центр окружности. хорда km образует с касательной угол, равный 84∘. найдите величину угла omk. ответ дайте в градусах. 5. сторона ac треугольника abc проходит через центр описанной около него окружности. найдите ∠c, если ∠a=75∘. ответ дайте в градусах. 6. на окружности по разные стороны от диаметра ab взяты точки m и n. известно, что ∠nba=73∘. найдите угол nmb. ответ дайте в градусах. 7. точка o – центр окружности, на которой лежат точки a, b и c. известно, что ∠abc=56∘ и ∠oab=15∘. найдите угол bco. ответ дайте в градусах. 8. в окружности с центром в точке о проведены диаметры ad и bc, угол oab равен 25°. найдите величину угла ocd.

Геометрия

Ответы

Shago

1. 1) ∠AOD=∠BOC=130° (вертикальные), значит ∪ ВС=130°(стягивает     центральный угол).

   2)∪ АВ=∪АС- ∪ВС=180°-130°=50°, значит  

       ∠АСВ =50/2=25 °(вписанный не центральный угол)

2. 1) ∆ АВС- равнобедренный , значит ∠ А=∠С=(180°-177°)/2=1,5°.

    2) ∪ ВС=1,5°·2=3° (стягивает вписанный угол), тогда ∠ВОС=3°  (центральный угол )

3. 1) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания,

     значит ∠ ОКМ=90°-7°=83° .

     2) ∆ ОКМ- равнобедренный (ОК=КМ=r) , значит ∠ОКМ=∠ОМK=83°.

4. 1) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания,

     значит ∠ ОКМ=90°-84°=6°

    2) ∆ ОКМ- равнобедренный (ОК=КМ=r) , значит ∠ОКМ=∠ОМK=6°.

5. ∠ ABC =90°(вписанный), т.к ∪ АС=180° (опирается на диаметр АС).  Тогда ∠С=180°-90°-75°=25°

6. 1) ∪ AN=73°·2=146° (стягивает вписанный  ∠ NBA). Тогда

       ∪ NB =∪ AB-∪AN=180°-146°=34°.

   2) ∠NMB=34°/2=17° (вписанный не центральный угол)

7. 1) ∆ АОВ- равнобедренный(АО=ОВ=r), значит ∠ОАВ=∠АВО=15°. Тогда             ∠ОВС =56°-15°=41°.

    2) ∆ ВОС-  равнобедренный(ВО=ОС=r), значит ∠ОВС=∠ВСО=41°.

8.  ∆ АОВ =∆ СОD (AO=OD=r, CO=OB=r, ∠AОВ =∠CОD-вертикальные ), значит  ∠ОАВ =∠ОСD=25°



1. в окружности с центром o ac и bd – диаметры. центральный угол aod равен 130∘. найдите вписанный у
wwladik2606222

1. Острый угол меньше 90°. Сумма смежных углов равна 180°, значит смежный с острым угол будет больше 90°, т.е. тупой.

ответ: в)

2. ∠1 - искомый, ∠2 и ∠3 - смежные с ним. Так как сумма смежных углов равна 180°, то

∠1 + ∠2 = 180° и ∠1 + ∠3 = 180°, значит ∠2 = ∠3 = 210°/2 = 105°.

∠1 = 180° - ∠2 = 180° - 105° = 75°

3. Полный угол составляет 360°, острый угол меньше 90°. Пусть n - количество углов с вершиной в одной точке.

360° / n < 90°

4 / n < 1

n > 4, т. е. 5 лучей можно провести.

4. Пусть 6 см - основание треугольника, тогда сумма боковых сторон:

18 - 6 = 12 см, а так как боковые стороны равны, то каждая равна 6 см.

Если 6 см - боковая сторона, то приходим к тому же результату:

18 - 6 · 2 = 18 - 12 = 6 см.

ответ: треугольник равносторонний со стороной 6 см.

5. ∠1 и ∠2 - внутренние односторонние при пересечении прямых m и n секущей а, так как их сумма равна 180° (135° + 45° = 180°), то прямы параллельны.

ответ: б)

6. ∠1 + ∠2 < ∠3

Сумма углов треугольника равна 180°:

∠1 + ∠2 + ∠3 = 180°, значит ∠1 + ∠2 = 180° - ∠3.

Подставим в первое неравенство:

180° - ∠3 < ∠3

2∠3 > 180°

∠3 > 90°

Значит треугольник тупоугольный.

ответ: в)

7. Пусть х - меньший угол, тогда 2х - больший. Сумма углов треугольника 180°:

x + x + 2x = 180°

4x = 180°

x = 45°

Углы треугольника 45°, 45° и 90°.

ответ: 2) прямоугольный, 3) равнобедренный.

8. Любая сторона треугольника меньше суммы двух других сторон. Этому условию удовлетворяют только тройки чисел: 2, 3, 4 и 3, 4, 5.

ответ: 2 треугольника.

Часть В.

1. Если в треугольнике медиана является биссектрисой, то треугольник равнобедренный.

АВ + AD = Pabd - BD = 18 - 5 = 13 см

BC = AB, CD = AD,⇒

Pabc = 2(AB + AD) = 2 · 13 = 26 см

2. АМ = МС = АС/2 = 12/2 = 6 см, так как ВМ медиана.

В ΔАВМ АО - биссектриса и высота, значит ΔАВМ равнобедренный,

АВ = АМ = 6 см.

3. Сумма острых углов прямоугольного треугольника равна 90°:

∠А + ∠В = 90°, тогда сумма их половин в два раза меньше:

∠1 + ∠2 = 45°.

В ΔАОВ: ∠АОВ = 180° - (∠1 + ∠2) = 180°- 45° = 135°

4. Все углы равностороннего треугольника равны 60°, тогда

∠DAC = ∠DCA= 60° - 15° = 45°.

ΔADC: ∠ADC = 180° - (∠DAC + ∠DCA) = 180° - 90° = 90°

5. Неточность в условии:

Биссектрисы AD и BE треугольника АВС пересекаются в точке О. Найдите угол С треугольника, если ∠АОЕ = 50°.

∠АОЕ - внешний угол треугольника АОВ, значит равен сумме двух внутренних, не смежных с ним:

∠АОЕ = ∠1 + ∠2 = 50°

Так как AD и ВЕ биссектрисы, то сумма углов А и В треугольника АВС будет в два раза больше:

∠А + ∠В = 2∠АОЕ = 2 · 50° = 100°.

Так как сумма углов треугольника равна 180°, то

∠С = 180° - (∠А + ∠В) = 180° - 100° = 80°

6. ∠ОАС = ∠ОСА, ⇒⇒ΔОАС - равнобедренный, тогда медиана BD является и высотой, значит и ΔАВС тоже равнобедренный.

Расстояние от точки до прямой - длина перпендикуляра, проведенного из точки к этой прямой.

OD⊥AC,⇒ ОС = 5 см.

Проведем ОЕ⊥АВ и OF⊥ВС. ОЕ = 8 см по условию.

Но BD и биссектриса равнобедренного треугольника АВС, а все точки биссектрисы равноудалены от сторон угла, значит

OF = OE = 8 см

alexseyzyablov
Диагонали ромба взаимно перпендикулярны.
AOD - прямоугольный треугольник.
ОР - высота из прямого угла в треугольнике AOD.
ОР=√(АР*РD)=√(6√3*2√3)=6см.
По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см.
R=AJ=JO=JP = АО/2 = 6см.
Площадь круга Sк=π*R²=36π.
В прямоугольном треугольнике АРО катет ОР равен половине
гипотенузы АО, значит <PAO=30°,
<РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°.
<PJK=120°(центральный угол, опирающийся на дугу РОК).
РН=0,5*АР=3√3см (катет против угла 30°).
AH=√(АР²-РH²)=√(108-27)=9см.
Площадь треугольника АКР равна
Sapk=AH*PH=9*3√3=27√3см².
Площадь сегмента КОР равна
Skop=(R²/2)*(π*α/180 -Sinα) - формула.
В нашем случае α=<PKJ =120°.
Skop=(36/2)*(π*120/180 -√3/2)
Skop=(12π-9√3)см².
Искомая площадь равна
S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².

Диагонали ромба авсd пересекаются в точке о.на отрезке ао как на диаметре построен круг.окружность,о

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1. в окружности с центром o ac и bd – диаметры. центральный угол aod равен 130∘. найдите вписанный угол acb. ответ дайте в градусах. 2. окружность с центром в точке o описана около равнобедренного треугольника abc, в котором ab=bc и ∠abc=177∘. найдите величину угла boc. ответ дайте в градусах. 3. прямая касается окружности в точке k. точка o – центр окружности. хорда km образует с касательной угол, равный 7∘. найдите величину угла omk. ответ дайте в градусах. 4. прямая касается окружности в точке k. точка o – центр окружности. хорда km образует с касательной угол, равный 84∘. найдите величину угла omk. ответ дайте в градусах. 5. сторона ac треугольника abc проходит через центр описанной около него окружности. найдите ∠c, если ∠a=75∘. ответ дайте в градусах. 6. на окружности по разные стороны от диаметра ab взяты точки m и n. известно, что ∠nba=73∘. найдите угол nmb. ответ дайте в градусах. 7. точка o – центр окружности, на которой лежат точки a, b и c. известно, что ∠abc=56∘ и ∠oab=15∘. найдите угол bco. ответ дайте в градусах. 8. в окружности с центром в точке о проведены диаметры ad и bc, угол oab равен 25°. найдите величину угла ocd.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Belokonev286
puma802
elenalukanova
алексей_Цуканов
movlam11
reception
КристинаАлександр
ognevasv555
petria742
andreykrutenko
КОРМИЛИЦЫНА
Lukina
Ямпольский
tany821
Vasilevich Fokin