ответ: ∠АСВ = 112°
Объяснение:
1. АО = ОВ и CO = OD по условию,
∠АОС = ∠BOD как вертикальные, значит
ΔАОС = ΔBOD по двум сторонам и углу между ними.
Из равенства треугольников следует, что
АС = BD и ∠САО = ∠DBO.
2. Тогда в треугольниках АСВ и BDA:
АС = BD, ∠1 = ∠2, AB - общая сторона, значит
ΔАСВ = ΔBDA по двум сторонам и углу между ними.
3. ∠1 = ∠2, а эти углы - накрест лежащие при пересечении прямых АС и BD секущей АВ, значит
АС║BD.
∠АСВ + ∠CBD = 180°, так как эти углы соответственные при пересечении параллельных прямых АС и BD секущей ВС, тогда
∠АСВ = 180° - ∠CBD = 180° - 68° = 112°
Поделитесь своими знаниями, ответьте на вопрос:
Докажи, что четырёхугольник abcd является прямоугольником, найди его площадь, если a(15; 1), b(17; 3), c(9; 11) и d(7; 9 sabcd= .
По формуле а=√(x2-x1)^2+(y2-y1)^2
AB=√(17-15)^2+(3-1)^2=√4+4=√8
BC=√(9-17)^2+(11-3)^2=√64+64=√128
CD=√(7-9)^2+(9-11)^2=√4+4=√8
DA=√(15-7)^2+(1-9)^2=√64+64=√128
Значит AB=CD и BC=DA, следовательно ABCD - прямоугольник
S=AB*CD=√8*√128=√1024=32