В ∆ АВС ∠ВСА=90°, ∠САК=15°
Высота СН=1. Найти АВ.
-----------
СН - высота ∆ ВСА и равна 1 по условию.
Отложим на продолжении ВС отрезок СК=ВС.
Соединим К и А.
СК=СВ, угол КСА=углу ВСА=90° (смежный).
В прямоугольных ∆ АВС и ∆ АКС катеты СК=СВ по построению, АС - общий.
∆ АСВ=∆ АСК по двум катетам =>
АК=АВ,
Треугольник АВК равнобедренный.
Угол КАС=углу САВ, следовательно, угол КАВ=2•15°=30°
Опустим перпедникуляр КМ на АВ
В прямоугольном ∆ ВКМ отрезки КС=ВС по построению. =>
С - середина отрезка ВК.
СН высота и перпендикулярна АВ, отрезок КМ перпендикулярен АВ по построению, поэтому СН║КМ, следовательно, СН- средняя линия ∆ ВКМ.=>
КМ=2СН=2.
∠КАМ=∠САВ+∠САК=30°
В прямоугольном ∆ КАМ катет КМ противолежит углу 30° и равен половине гипотенузы ( свойство).
АК=2КМ=4 ед. длины.
Гипотенуза АВ=АК=4 ед. длины - это ответ
Поделитесь своими знаниями, ответьте на вопрос:
Углы b и c при основании трапеции abcd равны 110 и 99 найдите градусные меры остальных углов
1. Сумма углов прилежащей к одной стороне трапеции равна 180° , следовательно:
B + A = 110 + A = 180 =>
A = 180-110 = 70 °
б) аналогично со второй стороной CD
99 + D = 180
d = 81°