Задание 1 - ответ: А) 120 см².
Задание 2 - ответ: Г) d sin α
Задание 3 - ответ: В) 432
Объяснение:
Задание 1.
Площадь боковой поверхности четырехугольной призмы равна произведению периметра основания на длину бокового ребра.
Так как четырёхугольная призма является правильной, то в её основании лежит квадрат, периметр которого равен:
P = 4 * 6 = 24 см.
Отсюда площадь боковой поверхности призмы:
Sб = 24 * 5 = 120 см²
ответ: А) 120 см².
Задание 2.
В прямоугольном треугольнике, образованном диагональю, боковым ребром и проекцией диагонали на плоскость основания, боковое ребро является катетом, лежащим против угла α, а диагональ d является гипотенузой.
Катет равен произведению гипотенузы на синус угла, противолежащего этому катету, то есть:
Боковое ребро = d sin α
ответ: Г) d sin α
Задание 3.
В основании правильной четырёхугольной пирамиды лежит квадрат, а проекцией вершины пирамиды является центр квадрата основания, в силу чего все 4 боковые грани по площади равны между собой.
Каждая из четырёх боковых граней представляет из себя равнобедренный треугольник со стороной основания 18 см и двумя боковыми сторонами по 15 см.
Находим по теореме Пифагора высоту этого треугольника:
h = √ [(15² - (18/2)²] = √ (225 - 81) = √144 = 12 см
Площадь одного треугольника - это одна-вторая произведения основания на высоту:
(18 * 12): 2 = 216 : 2 = 108 см².
Площадь 4-х таких треугольников:
108 * 4 = 432 см².
ответ: В) 432
√219 ≈ 14,8 см
Объяснение:
1. Диагональ основания d, согласно теореме Пифагора:
d = √(3²+8²) = √(9+64) =√73 см.
2. Диагональ основания d является проекцией на плоскость основания диагонали фигуры D.
3. В прямоугольном треугольнике, образованном диагональю фигуры D, её проекцией d на плоскость основания, а также высотой H прямоугольного параллелепипеда:
D - является гипотенузой, а d и Н - катетами.
Так как D наклонена к плоскости основания под углом 60°, то это означает, что угол между D и d равен 60°.
4. Катет H равен другому катету d, умноженному на тангенс угла противолежащего этому катету:
Н = d · tg 60° = √73 · √3 = √219 ≈ 14,8 см
ответ: √219 ≈ 14,8 см
Поделитесь своими знаниями, ответьте на вопрос:
Решите сторона треугольника равна 5 см, а высота проведённая к ней в 2 раза больше стороны. найдите площадь треугольника
а = 5см - сторона треугольника
ha = 2 · a = 2 · 5 = 10cм - высота проведённая к стороне а
S = 1/2 · a · ha - площадь треугольника
S = 1/2 · 5 · 10 = 25(cм²)
ответ: 25см²