Объяснение:
1. Если внутренние накрест лежащие углы равны, то прямые параллельны.
∠70°=∠70° ⇒
a║b
2. Если сумма внутренних односторонних углов равна 180, то то прямые параллельны.
∠110+∠70=180°⇒
c║d
3. Если соответственные углы равны, то прямые параллельны.
∠a=∠a
MD║|NK
4. Если соответственные углы равны, то прямые параллельны.
∠90=∠90
m║n
5. Если внутренние накрест лежащие углы равны, то прямые параллельны.
BC║AD
AB║CD
6. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠EFL=∠FLK ⇒ EF║LK
∠EKF=∠KEL⇒ FK║EL
7. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠NPM=∠PMQ ⇒NP║MQ
∠NMP=∠MPQ⇒NM║PQ
8. ΔAOB=ΔCOD (по двум сторонам и углу между ними)⇒
∠BAO=∠ODC если внутренние накрест лежащие углы равны, то прямые параллельны
AB║CD
9. ΔOXY=ΔOYZ по трем сторонам ⇒
∠XYO=∠YOZ ⇒ XY║OZ
∠XOY=∠OYZ⇒ OX║YZ
10.
UR║ST (внутренние накрест лежащие углы равны)
ΔRUO=ΔOST (по стороне и двум прилежащим к ней углам) ⇒
∠TRU=∠STR ⇒ RS║UT
Поделитесь своими знаниями, ответьте на вопрос:
35 диагональ выпуклого четырехугольника abcd, выписанного в окружность с центром в o, взаимно перпендикулярны. докажите, что ломанная aoc делит четырехугольник на две части равной площади.
Пусть K – точка пересечения диагоналей AC и BD. Если O принадлежит AC, то решение очевидно. Иначе, один из получившихся четырёхугольников – выпуклый. Пусть тогда M и N – основания перпендикуляров, опущенных из точки O на AC и BD. Тогда
SABCO = ½ AC·OM + ½ AC·BK = ½ AC·(OM + BK) = ½ AC·(KN + BK) = ¼ AC·BD = ½ SABCD.