frsergeysavenok
?>

Высоты п-ма равны 4 см и 8 см площадь п 64см^2 найти стороны 70

Геометрия

Ответы

leonid-adv70

Площадь параллелограмма: S=a*h, где а - сторона параллелограмма, h - высота проведенная к ней.

а*4=64; а=64/4=16 см - одна сторона;

в*8=64; в=64/8=8 см - другая сторона.

smalltalkcoffee5

Если что-то не понятно, пиши в комментариях, постараюсь максимально понятно все рассказать и объяснить

1. 8 вершин

2. Стоит ли объяснять, как строить? Если да, напиши, объяснить просто постараюсь

3. 12 ребер

1. CLND, BMLC, ABCD

2.

a) MN²=MK²+KN²

MK = AB = 3 см

KN = AD = 6 см

MN² = 3² + 6² = 9 + 36 = 45

MN = √45 = √(9*5) = √(3²*5) = 3√5

MN = 3√5 см

б) NL = AB = 3 см

NL = 3 см

в) DL²=DC²+CL²

DC = AB = 3 см

CL = AK = 4 см

DL² = 3² + 4² = 9 + 16 = 25

DL = √25 = 5

DL = 5 см

3. Изобрази на листе в клетку прямоугольник ABMK, со сторонами AK = MB = 3 см и MK = AB = 4 см

4. ABMK = DCLN = 4*3 = 12 см²

ADNK = BCLM = 4*6 = 24 см²

MLNK = ABCD = 3*6 = 18 см²

5. S поверхности параллелепипеда = 12*2 + 24*2 + 18*2 (сумма всех граней) = 24 + 48 + 36 = 108 см²

S = 108 см²

alexfold

Sefgh =  (a²/3)·(π-3(√3-1) ед².

Объяснение:

Пусть АВСD - квадрат со стороной "а".

Площадь фигуры EFGH равна учетверенной площади фигуры OEF.

Площадь фигуры OEF равна сумме площадей прямоугольного треугольника OEF и сегмента EF окружности радиуса R = a (сторона квадрата) с центром в точке А и центральным углом ∠EAF = α.

В треугольнике АЕР по Пифагору: ЕР = √(а²-а²/4) = а√3/2. =>

EO = EP-OP = а√3/2 - a/2 = а(√3-1)/2.

В треугольнике OЕF по Пифагору:

ЕF = √(OE² + OF²) = √(2·(a(√3-1)/2)²) = a(√3-1)√2/2.

Площадь треугольника OEF равна Soef = (1/2)·OE·OF = a²(√3-1)²/8.

По теореме косинусов в треугольнике AEF найдем угол EAF = α.

Cosα = (a² + a² - EF²)/2a² = (2a² - (a(√3-1)√2/2)²)/2a² = 2a²(4 - 3 +2√3 - 1)/(4·2a²) = √3/2.

α = arccos(√3/2) = 30°.

Найдем площадь сегмента EF, отсекаемого от круга (А;R) хордой EF по формуле:

S = Sc - Saef, где Sc - площадь сектора AEF, а Saef - площадь треугольника AEF.

Площадь сектора AEF равна Sсек = π·R²·α/360 = π·а²/12.

Площадь треугольника AEF = (1/2)·а²·Sin30 = а²/4.  =>

Площадь сегмента EF = π·а²/12 - а²/4 = а²·(π-3)/12.

Площадь фигуры OEF = a²(√3-1)²/8 + а²·(π-3)/12.

Площадь заштрихованной фигуры

Sefgh = 4·(a²(√3-1)²/8 + а²·(π-3)/12) =>

Sefgh = (a²/6)·(3(√3-1)²+2(π-3))= (a²/6)·(3(√3-1)² + 2(π-3)). =>

Sefgh = (a²/3)·(3-3√3 + π).

Sefgh =  (a²/3)·(π-3(√3-1) ед².

Или так:

Площадь фигуры EFGH равна сумме площадей квадрата EFGH и четырех сегментов EF.

Площадь квадрата EFGH= (a(√3-1)√2/2)² = a²(2-√3)ед².

Площадь четырех сегментов EF: 4(а²·(π-3))/12 = а²·(π-3)/3.

Площадь закрашенной фигуры:

a²(2-√3)+а²·(π-3)/3 = (a²/3)·(3-3√3+π) = (a²/3)·(π-3(√3-1) ед².


Найти площадь закрашенной фигуры

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Высоты п-ма равны 4 см и 8 см площадь п 64см^2 найти стороны 70
Ваше имя (никнейм)*
Email*
Комментарий*