№1 Ну если нарисовать параллелограм в соотношение 3:2, то получиться что на большей стороне по 3 равных отрезка, а на меньшей 2, всего получается 10 частей, а так как периметр равен 30, то надо 30 : 10, получается, что длина отрезка 3 см, а т. к. меньшая часть состоит из двух отрезочков, то 3*2=6
ответ: меньшая сторона 6 см
№2 Я не поняла, но там получается треугольник BNA прямоугольный, но мне кажется что то сдесь не хватает, ну может я чего не знаю.
№3 дана трапеция с основаниями ВС и АД , проведем высоту СН. Рассмотрим четырехугольник ABHD, AD параллельная BH,как перпендикуляры проведенные к одной прямой. AB параллельно DH, как отрезки лежажие на основаниях трапеции., сл-но ABHD параллелограм, поэтому AB=BH=13 см.
Рассм. треугольник BHC- прямоугольный т.к ВН перпендикулярна АВ, сл-но угол АВН =90градусов по скольку Угол АВС 135, то угол НВС=45 градусов. Т.К угол НВС+ угол ВСН=90 градусов, как сумма острых углов в прямоугольном треугольнике, , сл-но угол ВСН = 45градусов, а сл-но треугольник ВСН -равнобедренный с основанием ВС, поэтому ВН=НС=6 см
DC=DH+HC=12 см.
ну и по формуле вычисляешь)
№4 - ...
Здесь в чертеже нужно достроить вторую высоту, получим два треугольника они прямоугольные и равнобедренные, острые углы у равнобедренных треугольников равны по 45 градусов, а раз два треугольника были одинаковы то и в одном и в другом углы будут по 45 градусов, если взять нижнее(большее) основание за AD, а верхнее(меньшее) BC, углы A и D будут равные, т.к. трапеция равнобедренная, и равны по 45 градусов, а углы B и С(верхнего основания) найдем через две параллельные и секущие. Пусть BC и AD параллельные BA секущая. Углы B и A односторонние, сумма их равна 180 градусов. через уравнение X+45=180 найдем угол B, X=180-45, X=135. Угол B=углуC=135 радусов.
ответ: угол A= углу D = 45 градусов, угол B = углу C = 135
:)
Поделитесь своими знаниями, ответьте на вопрос:
Одна из диагоналей трапеции делит ее среднюю линию в отношении 3: 5, считая от точки м. в каком отношении, считая от точки м, делит ее вторая диагональ?
Одна из диагоналей трапеции делит ее среднюю линию в отношении 3:5, считая от точки М. В каком отношении, считая от точки М, делит ее вторая диагональ?