Пусть трапеция ABCD, ВС - малое основание. Если провести через С прямую II диагонали BD до пересечения с продолжением AD в точке Е, то треугольник АСЕ имеет ту же площадь, что и трапеция, (поскольку высота трапеции и высота этого треугольника - это просто расстояние от С до AD, а AE = AD + BC;)
У треугольника АСЕ стороны 7, 15 и 20. Площадь находится по формуле Герона и равна 42.
Однако :) можно и заметить, что такой треугольник является разностью двух "египетских" треугольников (12,16,20) и (9,12,15) - чтобы получить из этих двух треугольников нужный, надо наложить катеты 12, и от вершины прямого угла первого треугольника вдоль катета 16 отложить катет второго тр-ка 9 и соединить с противоположной вершиной. Это элементарное соображение сразу дает высоту треугольника ACE к стороне 7 - она равна 12, и площадь 12*7/2 = 42.
Обозначим треугольник АВС(смотри рисунок). Проведём перпендикуляры KQ и LP .Находим площадь треугольника AMN через площадь треугольника АВС. Аналогично находим площади всех нужных внутренних треугольников выражая их через площадь треугольника АВС. Площади треугольников MKL и NKL относятся также как и площади AMK и AKN, поскольку у них основание LK общее, а отношение высот равно отношению высот треугольников AMK и AKN. У треугольников AKN и ALN общее основание AN. Следовательно отношение их высот KQ и LP будет равно отношению их площадей=8/7. Но прямоугольные треугольники AKQ и ALP подобны, значит также и отношение AK/AL=8/7. ответ AL/LK=7/1.
Поделитесь своими знаниями, ответьте на вопрос:
Радиус основания конуса равен 6 см, а образующая наклонена к плоскости основания под углом 30. (а)найдите площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми равен 60. (б)найти площадь боковой поверхности конуса
Радиус основания конуса равен 6 см, а образующая наклонена к
плоскости основания под углом 30°. Найдите:
а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми 60°;
Плоскость сечения ограничена по бокам двумя образующими.
Следовательно, это равнобедренный треугольник.
Угол между образующими= 60°.
Следовательно, сечение представляет из себя равносторонний треугольник, .Площадь равностороннего треугольника можно найти несколькими
а) по классической формуле
S=ah:2
б) по формуле Герона
в) по формуле площади для равностороннего треугольника,т.е. квадрата стороны, умноженной на синус угла между сторонами, деленному на два.
S=(a²√3):4 .
Найдем образующую, которая образует с плоскостью основания угол 30°
АМ=АО:соs (30°)
АМ=6:(√3÷2)=4√3 см
Sсеч=(4√3)²*√3):4=48√3):4=12√3 см²
б) площадь боковой поверхности конуса.
Боковая площадь поверхности круглого конуса равна произведению
половины окружности основания на образующую
S=0,5 C* l=π r l,
где С- длина окружности основания, l-образующая
Sбок=π 6*4√3=24√3 см²
Подробнее - на -