Обозначим треугольник АВС, угол С = 90 град., АС = 8 см, ВС = 6 см. Меньшая высота в треугольнике проведена к большей стороне. Самая большая сторона в прямоугольном треугольнике является гипотенузой. Найдем ее по теореме Пифагора. АВ = V(АС^2 + ВС^2) = V(8^2 + 6^2) = V(100) = 10 см. Из угла С проведем к гипотенузе высоту СD. Рассмотрим два треугольника : АВС и АDС. Они являются подобными, так как угол А у них общий и оба они прямоугольные. Из подобия запишем : ВС/АВ = СD/АС Отсюда СD = ВС*АС/АВ = 6*8/10 = 4,8 см.
zanthia94
27.02.2023
Доказать, что АДОЕ - ромб. В тр-ках ДАО и ЕАО АО - общая сторона, нужно доказать, что они равнобедренные. Опустим высоты ОК и ОМ на стороны АВ и АС соответственно. Высоты равны радиусу описанной окружности. В тр-ках АКО и АМО КО=МО, АО - общая сторона и оба прямоугольные, значит они равны , значит ∠КАО=∠МАО ⇒ ∠ДАО=∠ЕАО. Так как ДО║АЕ, а АО - секущая, то ∠ДАО=∠АОЕ и ∠ЕАО=∠ДОА, значит ∠ДАО=∠ДОА и ∠ЕАО=∠ЕОА, следовательно тр-ки АДО и ЕАО равнобедренные и равны (АО - общая, см. выше). Вывод: АД=ДО=ОЕ=ЕА. Доказано.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Впараллелепипеде abcda1b1c1d1 найдите вектор, равный a) ad1+a1a b) bc-a1d c) 1/4 a1c- 1/4 a1c1- 1/4 db+ 1/4 ab
Обозначим треугольник АВС, угол С = 90 град., АС = 8 см, ВС = 6 см. Меньшая высота в треугольнике проведена к большей стороне. Самая большая сторона в прямоугольном треугольнике является гипотенузой. Найдем ее по теореме Пифагора. АВ = V(АС^2 + ВС^2) = V(8^2 + 6^2) = V(100) = 10 см. Из угла С проведем к гипотенузе высоту СD. Рассмотрим два треугольника : АВС и АDС. Они являются подобными, так как угол А у них общий и оба они прямоугольные. Из подобия запишем : ВС/АВ = СD/АС Отсюда СD = ВС*АС/АВ = 6*8/10 = 4,8 см.