OK=ON=OE-это все радиусы вписанной окружности в трапецию
ОС -биссектриса <C, OD-биссектриса <D
<C+<D=180, значит <KCO+<KDO=90-как сумма половинок углов С и D
ΔCOD-прямоугольный так как <COD=180-( <KCO+<KDO)=90
ОК в нем высота, тогда
OK^2=CK*KD(теорема: высота в прямоугольном треугольнике из прямого угла-это средне геометрическое отрезков, на которые она делит гипотенузу)
OK^2=10*40=400
OK=20=ON
SK^2=OK^2+SO^2=400+125=525
SK=√525=5√21
OC^2=OK^2+CK^2=400+100=500
OC=10√5
SC^2=OC^2+SO^2=500+125=625
SC=25
1-Г
2-Д
3-А
4-Б
Поделитесь своими знаниями, ответьте на вопрос:
Впараллелограмме abcd диагональ bd перпендикулярна стороне cd, угол c=60* . прямая, проходящая через точку o, параллельна ad и пересекает сторону cd в точке k. найдите площадь параллелограмма abcd, если ok=6см.
Т.к. OK ║ AD, а AD ║ BC ⇒ OK ║ BC
Точка O - центр пересечения диагоналей параллелограмма делит их пополам ⇒ OK средняя линия ΔBCD.
BC = 2 * OK = 2 * 6 = 12 см
В прямоугольном ΔBCD ∠CBD = 90° - ∠BCD = 90° - 60° = 30°.
Против угла в 30° лежит половина гипотенузы ⇒ CD = BC / 2 = 12 / 2 = 6.
В прямоугольном ΔBCD по теореме Пифагора найдем:
Площадь прямоугольного ΔBCD найдем как полупроизведение катетов:
Т.к. диагональ BD делит параллелограмм на два равных треугольника, то:
ответ: площадь параллелограмма равна 36√3 см2