меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см
Поделитесь своими знаниями, ответьте на вопрос:
50 . в треугольнике abc проведены высота bd, медиана bm и биссектриса bk.известно, что угол dbk= углу kbm. докажите, что угол abc = 90 градусов.
1)
BK биссектриса, тогда ABK=KBC или ABD+DBK=CBM+KBM откуда ABD=CBM=y и DBK=x по теореме Штейнера получается
AD*AM/(CM*CD) = (AB/BC)^2 но так как AM=CM (медиана) AD/CD = (AB/BC)^2 (1) с одной стороны AD=AB*siny и CD=BC*sin(2x+y) из прямоугольных треугольников ABD и CBD соответственно.
с другой AB/BC = cos(2x+y)/cosy из треугольника ABC Подставляя в (1) откуда siny/sin(2x+y) = cos(2x+y)/cosy откуда sin2x*cos(2x+2y)=0, x<180
откуда x=45-y
Значит ABC=2x+2y = 2*(x+45-x) = 90 гр
второй
Опишем около треугольника ABC окружность, пусть X,H,Y точки пересечения BM,BK,BD с описанной окружностью.
Тогда из условия следует AX=CY и AH=CH (опираются на равные углы) так же получаем что H середина дуги XY так как BK биссектриса, HM высота и биссектриса равнобедренного треугольника AHC и XY || AC (так как AXYC) равнобедренная трапеция , значит BYX=BDA=90 гр, если F точка пересечения XY и MH тогда из подобия треугольников XHM и XYB учитывая что XH=HY откуда XM/BX=1/2 то есть BM=MX а так как MX=MY (треугольники AMX и CMY равны) получаем BM=MX=MY треугольник BMY равнобедренный , откуда BD=YD откуда M центра описанной окружности, значит AC диаметр откуда ABC=90 гр.