1. 12 * 7 = 84 см"
2. 24 см
3.49√2 см
4. -----------
5.24√2 см²
Объяснение:
1. Тут и так понятно)
2. Высота поделила основу пополам,тем самым поделив треугольник на 2 маленьких.По теореме Пифагора квадрат гипотенузы = сумме квадратов катетов. Найдём катет( половину основы треугольника).
225 = 81 +
= 225 - 81 = 144
х = = 12 см
Теперь узнаем длинну основы: 12 +12 = 24 см
3.Площадь ромба через его сторону и угол
S = a²·sin(β) = (7√2)²·sin(135°) = 49*2 * 1/√2 = 49√2 см
4. Не знаю, прости((((
5.Дано: трапеція КМРТ, МР=7 см, КТ=9 см, ∠Т=45°.
Проведемо висоту РН. Розглянемо ΔРТН - прямокутний.
∠Т=45°, тоді ∠ТРН=90-45=45°, тобто ΔРТН - рівнобедрений.
Нехай РН=ТН=х см, тоді за теоремою Піфагора
х²+х²=6²; 2х²=36; х²=18; х=√18=3√2; РН=3√2 см.
S=(МР+КТ):2*3√2=(7+9)/2*3√2=24√2 см²
Поделитесь своими знаниями, ответьте на вопрос:
Точка р принадлежит стороне ас треугольника авс так , что < вас=рвс, ар=1, рс=8. найдите длину строны вс. ( с чертежом )
Поместим треугольник АВС точкой А в начало координат, стороной АС по оси Ох. Координаты точек А, Р и С известны: А(0; 0), Р(1; 0), С((9; 0).
Неизвестные координаты точки В примем (х; у).
Из точки В опустим перпендикуляр ВД на АС.
Угол РВС состоит из двух углов: РВД и ДВС.
tg(РВД) = (x - 1)/y, tg(ДВС) = (9 - x)/y.
Находим тангенс суммы углов.
tg(РВД) = (((x - 1)/y) + ((9 - x)/y))/(1 - ((x - 1)/y)*((9 - x)/y)) =
= (x - 1 +9 - x)/(y(у² - (x - 1)*(9 - x)/y).
После приведения подобных и сокращения получаем:
tg(РВД) = 8у/(у² - (x - 1)*(9 - x).
Так как по заданию угол РВД равен углу ВАС тангенс которого равен
у/х, то приравняем: 8у/(у² - (x - 1)*(9 - x) = (у/х).
По свойству пропорции после сокращения на у получаем:
8х = у² - 9х + 9 + х² - х или х² - 18х + 9 + у² = 0.
Выделим полный квадрат по х: (х² - 18х + 81) - 81 +9 + у² = 0.
(х - 9)² + у² = 72.
Получили уравнение окружности с центром в точке С и радиусом R = √72 = 6√2.
То есть, радиусом является искомая сторона ВС.
ответ: ВС = 6√2 ≈ 8,48528.