Вообще, это надо рисовать, иначе нифига непонятно (ну и про учебник присоединюсь к Эго Фризу)
Итак, что мы имеем: треугольник АВС, где угол А=90 градусов, и высота АD делит его на два прямоугольных треугольника.
Начнем с того, что попроще: треугольник ADB (угол D=90 градусов), катет AD=12, гипотенуза АВ=20, по теореме Пифагора 20^2=12^2+DB^2
Таким образом, сторона DB=16
Теперь рассмотрим второй треугольник, получившийся при делении большого треугольника высотой:
CDA, где угол D =90 градусов.
Катет AD=12, катет DC=X, гипотенуза AC=Y
По все той же теореме Пифагора получаем:
Y^2=12^2+X^2
Теперь рассмотрим исходный треугольник АВС
Катет АВ=20, катет АС=Y (смотри выше), гипотенуза СВ=X+16
По теореме Пифагора получаем:
20^2+Y^2=(X+16)^2 => Y^2=X^2+32X+256-400 => Y^2=X^2+32X-144
подставляем в уравнение Y^2=12^2+X^2 выраженное значение Y, получаем:
X^2+32X-144=12^2+X^2
32X=288
X=9
Таким образом, гипотенуза ВС=16+9=25
Катет АС=15
Косинус угла С равен отношению прилежащего катета к гипотенузе, т.е. cos C= AC/CB=15/25=3/5
Поделитесь своими знаниями, ответьте на вопрос:
Концы а и в отрезка ав расположены по одну сторону от плоскости . точка с принадлежит ав и : св=3: 4. точки а1, в1, с1 – проекции точек а, в, с на плоскость . найдите сс1, если аа1=3 см и вв1= 17 см.
1. Проводим прямую "а".
2. Замеряем циркулем длину данного нам основания.
3. Откладываем на прямой "а" от произвольной точки А отрезок АС, равный данному основанию.
3. Замеряем циркулем длину данной нам боковой стороны.
4. Устанавливаем ножку циркуля в точку А и радиусом, равным АВ, делаем дугу над прямой "а".
5. Устанавливаем ножку циркуля в точку С и радиусом, равным АВ, делаем дугу над прямой "а" до пересечения ее с первой дугой, получая точку пересечения В.
6. Соединяем точки А,В и с.
Получен искомый треугольник.
2)
Этот же алгоритм и для построения треугольника по трем сторонам. Только в пунктах 1,2 и 3 откладываем на прямой "а" ПЕРВУЮ сторону треугольника. В пункте 4 работаем со ВТОРОЙ стороной, то есть устанавливаем ножку циркуля в точку А и радиусом, равным длине ВТОРОЙ стороны, делаем дугу над прямой "а". В пункте 5 работаем с ТРЕТЬЕЙ стороной, то есть устанавливаем ножку циркуля в точку С и радиусом, равным длине ТРЕТЬЕЙ стороны, делаем дугу над прямой "а" до пересечения ее с первой дугой, получая точку пересечения В.