potemkin77
?>

35бстороны треугольника равны 6 см; 9 см; 12 см. найдите периметр подобного ему треугольника, если сумма наибольшей и наименьшей сторон равна 6 см

Геометрия

Ответы

gymnazium
Сумма наименьшей и наибольшей стороны первого треугольника будет равна 6+12=18

В подобных треугольниках все стороны в равных пропорциях, следовательно суммы соответствующих сторон будут иметь такую же пропорцию, а значит что бы узнать разность двух треугольников, надо 18÷3=3. Значит все стороны подобного треугольника уменьшены в три раза. Следовательно 3я сторона второго треугольника равна 12÷3=4, 2я сторона равна 9÷3=3, и самая маленькая, 1я сторона равна 6÷3=2, а значит Р=4+3+2=9см

ответ: Р=9см
Филипп1054
1)
Угол ВАС = углу АСД (накрест лежащие при ВС пар-но АД и секущей АС)
Углы АСТ и ТСД равны(по условию)
Они по 30 градусов
Рассмотрим треугольник СТД.
Угол С = 30 градусов, угол Д = 90 градусов
А катет, лежащий против угла 30 градусов равен половине гипотенузы
СТ = 6*2 = 12
По теореме пифагора
СД =корень квадратный из 144-38 =к.к. из 108 = 6 корней из 3
А периметр равен:
18*2 + 6 √3 * 2 =36 + 12√3
Если есть ответы, сверься, потому что то, что Р и Е середины я не использовала, и зачем дана точка О тоже не понятно. Условие точно правильное, потому что у треугольнико АСД не может быть бис-сы, а вот у угла АСД - вполне

Диагонали прямоугольника abcd пересекаются в точке о. отрезок ct биссектриса треугольника acd. точки
Doronin755
Треугольник PQW не обязательно прямоугольный. По т. синусов для него получаем PW=2R·sin∠Q=20·sin∠Q, а по т. косинусов для него же
20²·sin²∠Q=16²+12²-2·16·12·cos∠Q. Решаем это уравнение, получаем cos∠Q=0 и cos∠Q=24/25. Т.е. в первом случае PQW - действительно прямоугольный (см. рис. 1), а второй случай также существует при выпуклом ABCD (см. рис. 2.)

Т.к. AB/PB=CB/QB=5/4, то треугольник ABC подобен треугольнику PBQ с коэффициентом подобия 5/4, откуда  AC=(5/4)·PQ=5*16/4=20 и AC||PQ. Аналогично, треугольник BCD подобен треугольнику QCW с коэффициентом 5, т.е. BD=5QW=5*12=60 и BD||QW, откуда угол между диагоналями ABCD равен  углу PQW. Поэтому, площадь ABCD вычисляется по формуле (1/2)AC·BD·sin(∠PQW).
Значит, в случае, когда PQW - прямоугольный
S(ABCD)=(1/2)·20·60·sin(90°)=600.
Во втором случае
S(ABCD)=(1/2)·20·60·√(1-24²/25²)=168.

Точки p,q,w делят стороны выпуклого четырехугольника abcd в отношении ap: pb=cq: qb=cw: wd=1: 4, рад
Точки p,q,w делят стороны выпуклого четырехугольника abcd в отношении ap: pb=cq: qb=cw: wd=1: 4, рад

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

35бстороны треугольника равны 6 см; 9 см; 12 см. найдите периметр подобного ему треугольника, если сумма наибольшей и наименьшей сторон равна 6 см
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

turovvlad
safin8813
gorushko-tabak3
avto3132
mail5
Plotnikovangav
osnickyi
unalone5593
vlrkinn
uchpaot
airlineskozlova69
Мирзоев Денис
Смирнов_Андрей691
gen218
Mikhailovna_Litvinova276