Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
Поделитесь своими знаниями, ответьте на вопрос:
Дано арифметическое выражение: 50+25/(4*10-2)*8. замените выражением
Дано:
ABCDA₁B₁C₁D₁ - прямая призма
ABCD - трапеция
CD = KM = 6 см AB = 20 см
AD = 13 см BC = 15 см
AA₁ = 17 см
-------------------------------------------------
Найти:
V - ?
Рассмотрим основание призмы.
Проведем высоты: DK⊥AB, MC⊥AB
Пусть AK = x см, тогда MB = AB - AK - KM = 20 см - x см - 6 см = 14-x см.
Из ΔAKD: KD² = AD² - AK² = (13 см)² - (x см)²
Из ΔMBC: MC² = BC² - MB² = (15 см)² - (14-x см)²
Теперь решим систему уравнений с двумя неизвестными:
Где KD = MC = h, следовательно:
Теперь приравняем их:
169 см² - x² см² = 225 см² - (196 - 28x + x²) см²
169 см² - x² см² = 225 см² - 196 + 28x - x² см²
-x²+x²-28x = 225-196-169
-28x = -140 | : (-28)
x = 5 ⇒ AK = 5 см
Вычислим высоту основания из ΔAKD, и ΔMBC:
KD = √AD² - AK² = √(13 см)² - (5 см)² = √169 см² - 25 см² = √144 см² = 12 см
MC = √BC² - MB² = √(15 см)² - (14-5 см)² = √225 см² - (9 см)² = √225 см² - 81 см² = √144 см² = 12 см
KD = MC = 12 см
Теперь вычислим площадь основания призмы при площади трапеций:
(Sосн. = S(ABCD)) = (CD+AB)/2 × DK = (6 см + 20 см)/2 × 17 см = 26 см/2 × 17 см = 13 см × 17 см = 221 см²
И теперь мы находим объём призмы по такой формуле:
V = Sосн. × h = Sосн. × AA₁ = 221 см² × 17 см = 3757 см³
ответ: V = 3757 см³
P.S. Рисунок показан внизу↓