Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна
Поделитесь своими знаниями, ответьте на вопрос:
Втрапеции длина одной из диагоналей равна сумме длин оснований, а угол между диагоналями равен 60°. докажите, что трапеция – равнобедренная.
Пусть AD = a, BC = b, AC = a + b. Продолжим AD за точку D на расстояние DM = BC.
Тогда очевидно, что ?АСМ - равносторонний.
Но это значит, что угол АОD и угол ВОС - тоже равносторонние.
Отсюда непосредственно следует, что угол АОВ = угол СОD,
откуда имеем, что AB = CD.
Удачи! : )