Поделитесь своими знаниями, ответьте на вопрос:
Решите , через точку пересечения биссектрис внутренних углов при основании треугольника проведена прямая параллельно основанию. доказать, что часть этой прямой, заключенная между боковыми сторонами, равна сумме отрезков боковых сторон, заключенных между этой прямой и основанием
Номер 31. (думаю через время дополню и 30-ое).
Плошадь диагонального сечения параллелепида равна формуле: S= d×H
d- диагональ (ее вычислил через Пифагора, на рисунке думаю видно ясно).
В условии дано, что площадь д.сечения равна 200.
Вставляем наши значения в формулу:
200= 20×H
H= 200÷20= 10
ответ 31-го номера: H=10 cm.
Номер 30. (надеюсь верно его понял)
Боковое ребро в 30-ом номере вышло 26 см.
Поясню! Сперва я нашел диагональ через Пифагора (ответ вышел 26).
Потом провел большую диагональ к основанию с 45°. Таким образом две стороны по 45° равны между собой. Значит малая диагональ в 26 см, равен стороне (H).