Длины всех ребер правильной шестиугольной призмы равны. Вычислителе длину большей диагонали призмы, если известно, что площадь боковой поверхности призмы равна 96 см².
Площадь боковой поверхности правильной шестиугольной призмы находится по формуле:
а - ребро нашей призмы.
Обратим внимание на чертеж. Искомая длина большей диагонали есть длина гипотенузы прямоугольного треугольника АА₁D.
AD = 2 * 4 = 8 (см)
По теореме Пифагора:
с² = a² + b²
AD₁² = AD² + DD₁²
AD₁² = 8² + 4²
AD₁² = 64 + 16
AD₁² = 80
AD₁ = √(16*5) = 4√5 (см)
ответ: 4√5 см
ivnivas2008
15.04.2021
Дано: ABCD-прямоугольник Sabcd=480cм^2 P=92см CD=BD=с-диагонали Найти: Диагонали с П.с надо всё расписывать, и доказывать равность треугольников ABC i CDA. P=2(a+b) S=a×b S=480см^2; P=92см Далее мы подставляем значения и делим на два, но а и б нам неизвестны, потому что могут появляться другие значения: 92=2(a+b)
a+b=92/2 a+b=46 В итоге у нас получилось 46 см, но у нас есть площадь, поэтому составляем систему уровнения: |a×b=480; |a+b=46;
|(46-b)×b=480 |a=46-b В итоге у нас квадратное уровнение 46b-b^2-480=0 | - b^2-46b+480=0
За теоремою Вієта b1+b2=46 b2×b1=480
b1=16 b2=30 a1=30 b2=16 Так у нас получается 2 значения а и б, поэтому: Расмотрим треугольник АBC /C=90° За теоремою Пифагора: c^2=16^2+30^2=256+900=1156
1156 вытаскиваем из корня квадрата и с=34 см ответ: 34 см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Можно ли указать такие точки abc и d что лучи ab и cd пересекаются ac и bc пересекаются?
Длины всех ребер правильной шестиугольной призмы равны. Вычислителе длину большей диагонали призмы, если известно, что площадь боковой поверхности призмы равна 96 см².
Площадь боковой поверхности правильной шестиугольной призмы находится по формуле:
а - ребро нашей призмы.
Обратим внимание на чертеж. Искомая длина большей диагонали есть длина гипотенузы прямоугольного треугольника АА₁D.
AD = 2 * 4 = 8 (см)
По теореме Пифагора:
с² = a² + b²
AD₁² = AD² + DD₁²
AD₁² = 8² + 4²
AD₁² = 64 + 16
AD₁² = 80
AD₁ = √(16*5) = 4√5 (см)
ответ: 4√5 см