ответ: 5 (метров)
Объяснение: Обозначим высоту дома АВ, высоту фонаря МЕ, расстояние между домом и фонарем АМ ( см. рисунок), место, где лежат зерна, обозначим С.
Т.к. и дом, и фонарь перпендикулярны земле, соединив точки В и Е с точкой С, получим прямоугольные треугольники АВС и СЕМ, гипотенузы которых равны (так как голуби летели с равными скоростями и прилетели одновременно к зерну).⇒ ВС=СЕ
Примем АС=х, тогда СМ=17-х.
ВС²=ВА²+АС²
ЕС²=СМ²+ЕМ²
ВА²+АС²=СМ²+ЕМ²
12²+х²=(17-х)²+5², ⇒ 34х=170, х=5 (метров) = расстояние от дома до зерна.
Поделитесь своими знаниями, ответьте на вопрос:
Ав и вс - отрезки касательных, проведенных к окружности с центром о радиуса 10 см. найдите периметр четырехугольника авсо, если угол аос равен 120°.
1. ∠BAC=18°; ∠CAB = 72°.
2. 2 см, 7 см.
3. АС=BD=24 см.
4. 25°, 25°, 130°.
5. 20°, 70°, 90°.
Объяснение:
1. ∠ACB=x. Тогда ∠BAC=4x.
Сумма углов треугольника равна 180°. Тук как угол В=90°, то
х+4х=90°;
5х=90°;
х=18° - угол BAC;
угол CAB =4x=4*18= 72°.
***
2. P=2(a+b) = 18 см, где а=х см, b=x+5 см .
2(х+х+5)=18;
2х+5=9;
2х=4;
х=2 см - меньшая сторона;
Большая сторона равна х+5=2+5=7 см.
Проверим:
Р=2(2+7)=2*9=18 см. Всё верно!
***
3) Треугольник АВО - равносторонний АВ=ВО=АО=12 см.
Диагонали в прямоугольнике делятся пополам. Следовательно АС=BD=2*AO=24 см .
***
4. В ромбе все стороны и противоположные углы равны. Следовательно треугольник АВС - равнобедренный с углом при вершине 130°.
Сумма углов в треугольнике равна 180°.
∠САВ+∠АВС+∠ВСА=180°;
∠ВАС=∠ВСА=(180°-130°)/2=25°.
***
5. Диагонали в ромбе пересекаются под углом 90° и углы при вершине делит пополам. Следовательно угол ∠АВО =∠АВС/2=140°/2=70°.
Сумма углов в треугольнике равна 180°:
∠АВО+∠ВОА+∠ОАВ=180°.
∠ВАО=180°-(70°+90°)=180°-160°=20°;