1. Если MN=NK, следовательно, треугольник MNK равнобедренный. ⇒ MN = 11, NK = 11. В равнобедренном треугольнике биссектриса, проведенная к основанию, является и медианой и высотой. Значит, что MD=DK=3,5. Все основание MK=7. Из этого легко вытащить периметр: Р=MN+NK+MK=11+11+7=29 3. Смотря какой угол брать. Если в треугольнике АВС, где В - вершина и именно угол В брать под эти значения, то остальные углы будут равны: а) ∠А=∠С=180°-58°=122°:2=61° ∠А=∠С=61° б) 180°-20°=160°:2=80° ∠А=∠С=80° в) 180°-80°=100°:2=50° ∠А=∠С=50°
S = 544 ед²
Объяснение:
Треугольник АВС. Медианы АР и ВН, пересекаясь в точке О, образуют прямоугольные треугольники АОН и ВОР.
В треугольнике АОН по Пифагору: АН² = АО² + ОН², а в треугольнике ВОВ - ВР² = ВО² + ОР².
Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. =>
АО =(2/3)*АР; ОР = (1/3)*АР; ОН = (1/3)*ВН.
Тогда по Пифагору: АН² = (2*АР/3)² + (ВН/3)² =>
9*АН² = 4*АР² + ВН² (1) . Аналогично
9*ВР² = АР² + 4*ВН² (2) .
АН = АС/2 =22 ед. ВР = ВС/2 =14 ед. ( Так как АР и ВН - медианы).
Решая систему двух уравнений (1) и (2) с двумя неизвестными, получаем:
ВН² = 180; АР² = 1044. Подставляем эти значения в уравнение: АВ² = ВО² + АО² (по Пифагору в треугольнике АВО ), получим:
АВ² = (4/9)*(ВН² + АР²) = 4*(180+1044)/9 = 544 ед².
Это и есть площадь квадрата со стороной АВ.