KP=4
3
см
S_{bp} = 256S
bp
=256 см²
Объяснение:
Дано: AB = BC = CD = AD = 16 см, ∠BAD = 30°, ∠KHO = 60°, KH ⊥ AB,
OH ⊥ AB, KO ⊥ ABC, KABCD - піраміда
Знайти: KO, S_{bp}S
bp
- ?
Розв'язання: Так як основою піраміди KABCD є ромб ABCD за умовою і всі двогранні кути піраміди рівні, то точка O - є точкою перетину діагоналей ромба. За властивістю ромба його діагоналі перетинаються під кутом 90° і точкою перетину діляться навпіл, отже AO = OC, DO = OB. Так як трикутники ΔAOB, ΔCOB, ΔCOD і ΔAOD - прямокутні, пр цоьму AO = OC, DO = OB, от за формулою площі прямокутного трикутника:
S_{зAOB} = S_{зCOB} = S_{зCOD} = S_{зAOD}S
зAOB
=S
зCOB
=S
зCOD
=S
зAOD
, отже S_{ABCD} = 4S_{зAOB}S
ABCD
=4S
зAOB
.
Так як за умовою OH ⊥ AB, то OH - висота трикутника ΔAOB, отже
S_{зAOB} = \dfrac{OH \cdot AB}{2}S
зAOB
=
2
OH⋅AB
. За формулою площі ромба: S_{ABCD} = AB^{2} \sin \angle BADS
ABCD
=AB
2
sin∠BAD .
4S_{зAOB} = AB^{2} \sin \angle BAD4S
зAOB
=AB
2
sin∠BAD
\dfrac{4OH \cdot AB}{2} = AB^{2} \sin \angle BAD
2
4OH⋅AB
=AB
2
sin∠BAD
2OH \cdot AB = AB^{2} \sin \angle BAD|:2AB2OH⋅AB=AB
2
sin∠BAD∣:2AB
OH = \dfrac{AB\cdot \sin \angle BAD}{2} = \dfrac{16 \cdot 0,5}{2} = 8 \cdot 0,5 = 4OH=
2
AB⋅sin∠BAD
=
2
16⋅0,5
=8⋅0,5=4 см.
Розглянемо прямокутний трикутник ΔKOH:
tg \ \angle KHO = \dfrac{KO}{OH} \Longrightarrow KO = OH \cdot tg \ \angle KHO = 4 \cdot tg(60^{\circ}) = 4\sqrt{3}tg ∠KHO=
OH
KO
⟹KO=OH⋅tg ∠KHO=4⋅tg(60
∘
)=4
3
см.
Так як усі грані піраміди рівні за площею трикутники, то
S_{bp} = 4S_{зKAB} = \dfrac{4KH \cdot AB}{2} = 2KH \cdot AB = \dfrac{2 \cdot AB \cdot OH}{\cos \angle KHO} = \dfrac{2 \cdot 16 \cdot 4}{\cos 60^{\circ}} =S
bp
=4S
зKAB
=
2
4KH⋅AB
=2KH⋅AB=
cos∠KHO
2⋅AB⋅OH
=
cos60
∘
2⋅16⋅4
=
=\dfrac{128}{0,5} = 256=
0,5
128
=256 см²
Знайдіть бічну сторону рівнобічної трапеції, якщо її основи дорівнюють 12 см і 15 см, а периметр трапеції становить 45 см.
9 смОУ прямокутній трапеції тупий кут більший за гострий на 40°. Чому дорівнює гострий кут трапеції?
70°Сторони трикутника дорівнюють 6 см, 9 см і 12 см. Знайдіть периметр трикутника, утвореного середніми лініями даного трикутника.
13,5Знайдіть середню лінію рівнобічної трапеції, якщо її бічна сторона дорівнює 6 см, а периметр становить 36 см.
12Сторони трапеції відносяться як 4: 2: 7: 8, а периметр дорівнює 42 см.
Обчисліть другу за величиною сторону трапеції.
14Висота прямокутної трапеції дорівнює 4 см, менша основа дорівнює 6 см, кут між більшою основою та більшою бічною стороною дорівнює 45°. Знайдіть довжину середньої лінії трапеції. 8Три сторони трапеції рівні між собою, діагональ дорівнює одній з основ. Знайдіть кути трапеції. У відповіді вкажіть менший кут.72Поделитесь своими знаниями, ответьте на вопрос:
Основи трапеції дорівнюють 6 см і 27 см, а одна з бічних сторін - 13 см. знайдіть радіус кола, вписаного в дану трапецію.
ответ:6 см
Объяснение:
1.в трапецию можно вписать окружность тогда, когда сумма оснований равна сумме боковых сторон.
Следовательно, можно найти вторую боковую сторону:
6+27=13+х
33=13+х
х=33-13
х=20
20 см - вторая боковая сторона
2. Радиус вписанной окружности в трапецию равен половине высоты трапеции.
Высота трапеции неизвестна. Её можно узнать, найдя площадь трапеции.
Формула площади трапеции по четырем сторонам :
подставляем все значения в эту формулу, учитывая, что а=6, б=27см, с=13 см, д=20 см, и находим площадь, которая равна 198 см2.
3. Ну а теперь можно приступить к нахождению высоты, зная площадь и основания.
У нахождения площади также существует формула: (а+б)/2*высоту
Подставляем все известные значения.
(6+27)/2*высоту=198
33/2*высоту=198
высота=198*2/33
Высота равна 12 см.
4. Радиус круга: 12/2 = 6 см.