Если боковые грани наклонены к основанию пирамиды под одним и тем же углом, то высота приходит в центр вписанной окружности. В параллелограмм можно вписать окружность, если он ромб. Стороны ромба равны по 24√3/4 =6√3 см. Площадь его находим по формуле а²*sin 120=36*3*√3/2 = 54√3. Высоты боковых граней равны. Их можно найти из ΔSOM. SM=OM/cos 60°. OM - половина высоты ромба,DK= DC* sin∠C= 6√3*√3/2 =9 см. ОМ= 4,5 см. SM= 4,5/(/2) = 9 см. S(бок) =1/2*P(осн) * SM = 1/2*24√3*9 =108√3. Полная поверхность равна 108√3+54√3=162√3. Значит а=162.
Lukina
04.12.2022
В параллелограмме против острого угла лежит меньшая диагональ. Пусть острый угол в параллелограмме <A. Опустим высоту ВН из тупого угла В на сторону AD. <ABH=30° (так как сумма острых углов прямоугольного треугольника равна 90°, а <A=60° - дано). Тогда отрезок АН= 5 см, как катет, лежащий против угла 30°. ВН=√√АВ²-АН²) = √(100-25) =√75 см. Тогда в прямоугольном треугольнике НВD по Пифагору HD=√(BD²-BH²) = √(14²-75) =√121 = 11 см. AD=AH+HD = 5+11=16см. Периметр Р=2(10+16) = 52 см.
P.S. Второй вариант дан в приложении. ответ тот же: Р=52см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Докажите, что через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, притом только одна.
Стороны ромба равны по 24√3/4 =6√3 см. Площадь его находим по формуле а²*sin 120=36*3*√3/2 = 54√3.
Высоты боковых граней равны. Их можно найти из ΔSOM. SM=OM/cos 60°.
OM - половина высоты ромба,DK= DC* sin∠C= 6√3*√3/2 =9 см. ОМ= 4,5 см.
SM= 4,5/(/2) = 9 см.
S(бок) =1/2*P(осн) * SM = 1/2*24√3*9 =108√3.
Полная поверхность равна 108√3+54√3=162√3. Значит а=162.