Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Точка пересечения диагоналей - центр ромба и она делит высоту ромба так же пополам. В прямоугольном треугольнике, образованном половинами диагоналей и стороной ромба, катеты относятся как 3:4, значит треугольник Пифагоров (или египетский) и отношение сторон в нем равно 3:4:5. Пусть коэффициент отношения равен Х. Тогда по свойству высоты из прямого угла в этом треугольнике имеем: 12 = 3х*4х/5х => х = 5см.
Половины диагоналей равны 3х = 15см и 4х=20см, а диагонали, соответственно, равны d=30см и D=40см.
Площадь ромба равна половине произведения его диагоналей.
S = 30*40/2 = 600см².
Поделитесь своими знаниями, ответьте на вопрос:
Стороны основания прямоугольника-12см и 5см.диагональ прямоугольника с плоскостью основания составляет 45° угол.найдите боковую сторону прямоугольника.
тр. АВС = тр.АСД О=точка пересечения диагоналей ОН-высота
АО=1/2АС значит ОН/СД=1/2
СД=6 см ОН=3см
так же другая
1/2*16=8см
ответ 8см и 3 см