Формула линейной функции имеет вид y=kx+b, где х — независимая переменная (абсцисса точки); y — зависимая переменная (ордината точки); k, b — числовые коэффициенты.
Числовой коэффициент b показывает, в какой точке график пересекает ось ординат (Оу). В данном случае b = 3. Наша формула обретет вид:
Числовой коэффициент k отвечает за наклон графика линейной ф-ции:
Если график ф-ции образует с положительной осью Ox острый угол, тогда коэффициент k > 0, если тупой — k < 0.
В данном случае k < 0, то есть k — отрицательное число.
Из формулы выразим k:
Возьмём любую удобную нам точку на прямой и подставим ее координаты в полученную формулу:
A (4; 0)
В итоге, формула линейной функции получится следующей:
priemni451
07.06.2022
Треугольники АВC и ADB подобны по двум углам (<BAC=<BCA, как углы при основании равнобедренного треугольника, <ABD и <BAD равны - дано). Из подобия АВ/AD=AC/AB. Или 18/12=АС/18. Отсюда АС=18*18/12=27. Тогда DC=АС-АD или DC=27-12=15.
Второй вариант решения: Треугольники АВC и ADB подобны по двум углам, значит <ABC=<ADB. Пусть <ABC=<ADB=α. Тогда по теореме косинусов из треугольника АВС: АС²=АВ²+ВС²-2*АВ*ВС*Cosα. Или АС²=2*18²(1-Cosα).(1) По теореме косинусов из треугольника АВD: АВ²=AD²+BD²-2*AD*BD*Cosα. Или 18²=12²+12²-2*12*12*Cosα. Отсюда Cosα= -1/8. Подставим это значение в (1): АС²=2*18²(1+1/8)=729. Или АС=√729=27. DC=АС-АD или DC=27-12=15. ответ: DC=15.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Втрапеции abcd на боковых сторонах ab и cd выбраны точки n и f соответственно. докажите, что если угол baf=углу cdn, то угол afb= углу dnc
Формула линейной функции имеет вид y=kx+b, где х — независимая переменная (абсцисса точки); y — зависимая переменная (ордината точки); k, b — числовые коэффициенты.
Числовой коэффициент b показывает, в какой точке график пересекает ось ординат (Оу). В данном случае b = 3. Наша формула обретет вид:
Числовой коэффициент k отвечает за наклон графика линейной ф-ции:
Если график ф-ции образует с положительной осью Ox острый угол, тогда коэффициент k > 0, если тупой — k < 0.
В данном случае k < 0, то есть k — отрицательное число.
Из формулы выразим k:
Возьмём любую удобную нам точку на прямой и подставим ее координаты в полученную формулу:
A (4; 0)В итоге, формула линейной функции получится следующей: