Т. к. ABCD квадрат, то AB=BC=CD=AD, а углы A, B, C, D = 90 градусов, то...
A1B1B и D1C1D равнобедренные, следовательно
A1D1A и B1C1C - равнобедренные, значит
A1D1=B1C1 и A1B1=D1C1.
Т. к. все стороны равны и параллельны, A1B1C1D1 прямоугольник.
Вывод: Ч.Т.Д
oslopovavera
19.05.2022
Давайте без точки О. 1. Строим АК. То есть надо разделить угол А ПОПОЛАМ. Из точки А циркулем делаем засечки D и E (одним радиусом) . Затем ставим острие циркуля в точки D и E и описываем равными радиусами дуги, пересекающиеся в точке F. Прямая, соединяющая А и F делит угол А пополам. Продолжаем эту прямую до пересечения со стороной ВС и получаем точку К. 2) Строим ВМ. То есть надо разделить сторону АС пополам. Одним раствором циркуля (большим половины АС) делаем засечки с двух сторон от АС. Соединяем точки засечек. Пересечение этой прямой с АС и дает точку М - середину АС. 3)Строим СН. То есть надо опустить из точки С перпендикуляр на АВ. Из точек А и Б проводим окружности, проходящие через точку С. Соединяем точки пересечения этих окружностей. Точка пересечения этой прямой с о стороной АВ и есть точка Н.
kruttorg
19.05.2022
В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Могу ошибиться в вычислениях.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Т.8.5 номер 8 abcd-квадрат. доказать a1b1c1d1-квадратт.8.4 номер 10 abcd-ромб доказать bf=de
Т. к. ABCD квадрат, то AB=BC=CD=AD, а углы A, B, C, D = 90 градусов, то...
A1B1B и D1C1D равнобедренные, следовательно
A1D1A и B1C1C - равнобедренные, значит
A1D1=B1C1 и A1B1=D1C1.
Т. к. все стороны равны и параллельны, A1B1C1D1 прямоугольник.
Вывод: Ч.Т.Д