В равнобокой трапеции диагональ перпендикулярна боковой стороне и является биссектрисой острого угла при основании. Найти высоту трапеции , если ее площадь равна 9√3
Объяснение:
АВСМ-равнобедренная трапеция.
1)Если трапеция является равнобедренной, то около неё можно описать окружность. Пусть О-принадлежит АМ . Тогда ОА=ОС=ОМ как центры описанной окружности , т. к. центр описанной окружности лежит на середине гипотенузы .
2)Углы 1 и 2 равны как накрест лежащие при АМ||ВС, АС-секущая⇒ΔАВС-равнобедренный и ВА=ВС. Значит и ВА=ВС=МС.
3)ΔОАВ=ΔОВС=ΔОСМ по трем сторонам ВА=ВС=МС, остальные радиусы......Значит
- ∠3=∠4=∠5=180°:3=60°.
- их площади равны и S(ΔОСМ )=9√3:3=3√3.
3)В ΔОСМ ,∠СОМ=60° и ОС=ОМ ⇒ два других угла по 60°⇒этот треугольник равносторонний.
S( равност.тр)=(а²√3):4 .Найдем сторону треугольника (а²√3):4=3√3 или а²=12 , а=√12 .
Площадь можно найти иначе S( равност.тр)=1/2*а*h.
3√3=1/2*√12*h или h=3.
Очевидно, если две плоскости взаимно перпендикулярны, мы должны использовать даную нам аксиому 4, В которой говорится что Если 2 плоскости имеют общую точку, то они пересекаются по прямой. Нам дано что угол пересечения равен 90 градусам, что дает нам понять что треугольники будут задействованы. Проведем отрезки из точки А равные 20 и 21 см. Оттуда мы их соединим, и продлим их. Получим 2 квадрата гипотенузы умноженные на 4. После чего нужно использовать формулу радиуса окружности вокруг треугольника за площадью. (Герона) После этого спокойно говорим что за Теоремой 2.2 2 прямые лежать в 1 плоскости. Так как они пересекают плоскость (пускай альфа) то они лежат в этой площине за 3 аксиомой.Из этого выходит что угол пересечаения дает нам использовать все теоремы планиметрии. ТАкие как теорема Пифагора или среднего значения. Из чего выплывает ответ : 20.5 см!
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике abc (угол b=90°) биссектриса ae равна отрезку ec.докажите, что ac=2ab. .решите и объясните.
Подробнее - на -