Через сторону АД ромба АВСД проведена плоскость альфа, удаленная от ВС на расстояние, равное 3√ 3 см. Сторона ромба-12 см, угол ВСД=30º. Найдите угол между плоскость ромба и плоскостью альфа
ВС ║АД, ⇒ ВС║α
АД ∈ плоскости α, и расстояние от ВС до плоскости равно длине отрезка их общего перпендикуляра (свойство).
Угол между плоскость ромба и плоскостью α -двугранный угол, и его величина определяется градусной мерой линейного угла.
В данном случае это величина угла, который получится, если из точки Н к АД— линии пересечения плоскости ромба и плоскости альфа, —провести перпендикуляры в обеих плоскостях.
Пусть Н - основание высоты ромба, проведенной из В к АД, а НМ перпендикуляр к АД в плоскости альфа. (см. рисунок)
Искомый угол - угол МНВ.
В треугольнике АВД высота ВН как катет, противолежащий углу 30º, равна половине гипотенузы АВ.
ВН=АВ:2=12:2=6 см
В ∆ ВМН катет ВМ противолежит искомому углу ВНМ.
sin∠ВНМ=ВМ:ВН=(3√3):6=(√3):2 - это синус угла 60º
Угол между плоскость ромба и плоскостью альфа равен 60º.
Удивительно хитрое условие:)
Сечение АМВ - это равносторонний треугольник со стороной 8. Его площадь 16*корень(3).
Пояснения совсем не касаются стереометрии, а касаются удивительных свойств равнобедренного треугольника с углом при вершине 36 градусов. Оба угла при основании 72 градуса. Поэтому биссектриса угла при основании делит треугольник на два равнобедренных, и отсюда получается, что биссектриса угла при основании равна основанию (кроме того, она равна и отрезку боковой стороны от вершины до пересечения с ней биссектрисы).
(Если все это трудно идет :), то в обозначениях задачи легко увидеть, что
угол SAC = угол SCA = (180 - 36)/2 = 72 градуса,
угол SAM = 72/2 = 36 градусов, и поэтому AM = SM (так понятно?) далее
угол АМС = угол SAM + угол ASM = 36 + 36 = 72 градуса = угол MCA, откуда АМ = АС.)
Именно отсюда я и получил, что АМ = АС =8; не сложно отсюда же обосновать, что ВМ - биссектриса угла SBM треугольника SBM, который в точности такой же как треугольник SAC. ПОэтому и BM =8.
Это все.
Именно такой треугольник используется для вычисления в радикалах тригонометрических функций углов, кратных 18 градусам.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь треугольника если сторона a=5, b=квадратный корень из 65, с= квадратный корень из 58 не по формуле !
Формула через синус:
S = ab * sin(∠ab)/2
Синус через косинус:
sin(∠ab) = √(1 - (cos(∠ab))^2)
Теорема косинусов:
c^2 = a^2 + b^2 - 2ab * cos(∠ab)
c^2 - a^2 - b^2 = 2ab * cos(∠ab)
(c^2 - a^2 - b^2)/(2ab) = cos(∠ab)
Подставим найденный косинус во второе уравнение
sin(∠ab) = √(1 - ((c^2 - a^2 - b^2)/(2ab))^2)
Подставим наше уравнение в первое уравнение
S = ab * √(1 - ((c^2 - a^2 - b^2)/(2ab))^2) * 1/2
После того, как ты подставишь значения, получится 37/2 = 18,5
Я сделал проверку (по формуле Герона, конечно же) получился такой же ответ
P.s
Я прикрепил скрин из калькулятора
В первом уравнении я обозначил площадь за x, а во втором за S