Находим координаты векторов и модули (вложение 1).
Находим модуль вектора а, скалярное произведение векторов а и b, угол между векторами c и d (вложение 2).
Приводим более подробное решение по определению угла меду векторами c и d (пусть они записаны как a и b).
Найдем скалярное произведение векторов:
a · b = ax · bx + ay · by + az · bz = 2 · 5 + (-9) · (-1) + (-10) · 5 = 10 + 9 - 50 = -31 .
Найдем длины векторов:
|a| = √ax2 + ay2 + az2 = √22 + (-9)2 + (-10)2 = √4 + 81 + 100 = √185 .
|b| = √bx2 + by2 + bz2 = √52 + (-1)2 + 52 = √25 + 1 + 25 = √51 .
Найдем угол между векторами:
cos α = (a · b ) / |a||b| .
cos α = -31 / (√185*√51) =
= - 31/√9435 = -31*√9435 / 9435 ≈ -0.319146.
Поделитесь своими знаниями, ответьте на вопрос:
Один з кутів, які утворюються при перетині двох прямих у 4 рази більший за суму суміжних з ним кутів. (у відповіді вкажіть менший з кутів)
AS - боковое ребро =13.
SH - апофема = 10.
АН - половина стороны (так как в правильной пирамиде боковые грани - равнобедренные треугольники), по Пифагору равна √(AS²-SH²) или
АН=√(169-100)=√69.
АВ=2√69.
АВС - правильный треугольник, в котором СН - высота, медиана и биссектриса. СН=(√3/2)*АВ (формула).
СН=(√3/2)*2√69=3√23.
НО=(1/3)*СН (свойство медианы) или
НО=√23.
Из прямоугольного треугольника SOH по Пифагору:
SO=√(SH²-HO²) или SO=√(100-23) =√77.
ответ: SO=√77.