mail9
?>

35 сделайте , нужно, контрольная на стипендию (

Геометрия

Ответы

Plotnikovangav

Дано: ABCD — квадрат, Sabcd= 4, т.М — середина АВ, АМ=ВМ, DH⟂СМ.

Найти: DH.

Решение.

1) Найдем сторону квадрата.

АВ²= 4;

АВ= 2 (–2 не подходит).

AB=BC=CD=AD= 2.

т.M — середина АВ, значит, АМ=ВМ= 2:2= 1.

2) Мы видим два равных прямоугольных треугольника: ΔMBC и ΔMAD (равны по двум катетам).

Найдем их площадь. Площадь прямоугольного треугольника равна половине произведения его катетов.

Значит, Smbc= Smad= ½•1•2= 1.

3) А площадь треугольника MDC равна разности площади квадрата и площадей треугольников MBC и MAD.

Т.е. Smdc= Sabcd–Smbc–Smad= 4–1–1= 4–2= 2.

4) Найдем сторону МС прямоугольного треугольника МВС (МС - это гипотенуза) по т.Пифагора:

МС²= МВ²+ВС²;

МС²= 1+2²;

МС²= 5;

МС= √‎5

5) Площадь обычного (произвольного) треугольника равна произведению половины основания этого треугольника на высоту, проведённую к этому основанию.

Для треугольника MDC это выглядит так:

Smdc= ½•MC•DH.

2= ½•√‎5•DH;

2 : ½ = √‎5DH;

√‎5DH= 4;

DH= 4/√‎5.

Расстояние от вершины D квадрата ABCD до прямой СМ равно 4/√‎5.

ОТВЕТ: 4/√‎5.


На стороне АВ квадрата АВСД отмечена середина М. Найдите расстояние от вершины Д до прямой СМ, если
Альберт Татьяна

Дано: ABCD — квадрат, Sabcd= 4, т.М — середина АВ, АМ=ВМ, DH⟂СМ.

Найти: DH.

Решение.

1) Найдем сторону квадрата.

АВ²= 4;

АВ= 2 (–2 не подходит).

AB=BC=CD=AD= 2.

т.M — середина АВ, значит, АМ=ВМ= 2:2= 1.

2) Мы видим два равных прямоугольных треугольника: ΔMBC и ΔMAD (равны по двум катетам).

Найдем их площадь. Площадь прямоугольного треугольника равна половине произведения его катетов.

Значит, Smbc= Smad= ½•1•2= 1.

3) А площадь треугольника MDC равна разности площади квадрата и площадей треугольников MBC и MAD.

Т.е. Smdc= Sabcd–Smbc–Smad= 4–1–1= 4–2= 2.

4) Найдем сторону МС прямоугольного треугольника МВС (МС - это гипотенуза) по т.Пифагора:

МС²= МВ²+ВС²;

МС²= 1+2²;

МС²= 5;

МС= √‎5

5) Площадь обычного (произвольного) треугольника равна произведению половины основания этого треугольника на высоту, проведённую к этому основанию.

Для треугольника MDC это выглядит так:

Smdc= ½•MC•DH.

2= ½•√‎5•DH;

2 : ½ = √‎5DH;

√‎5DH= 4;

DH= 4/√‎5.

Расстояние от вершины D квадрата ABCD до прямой СМ равно 4/√‎5.

ОТВЕТ: 4/√‎5.


На стороне АВ квадрата АВСД отмечена середина М. Найдите расстояние от вершины Д до прямой СМ, если

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

35 сделайте , нужно, контрольная на стипендию (
Ваше имя (никнейм)*
Email*
Комментарий*