17,6см
Объяснение:
1) Теорема: Сумма углов любого треугольника = 180°.
В Прямоугольном треугольнике один угол = 90°, второй (по условию) = 60°, следовательно, третий угол = 180°- 90°-60° = 30°
2) Меньший угол = 30°.
Теорема: Против меньшего угла в треугольнике лежит меньшая сторона, в данном случае, меньший катет, т.е. искомый.
3) Теорема: в прямоугольном треугольнике против угла в 30° лежит катет, равные половине гипотенузы.
Пусть меньший катет = х, а гипотенуза = а (см). Тогда
х = а/2(см) , откуда а = 2х(см)
4) По условию:
х + а = 52,8 см. Подставляя значение а в уравнение, получим:
х + 2х = 52,8
3х = 52,8
х= 52,8 / 3
х =17,6 (см) - длина меньшего катета.
Поделитесь своими знаниями, ответьте на вопрос:
Докажите что если соединить середины сторон равнобедренного треугольника то получится равнобедренный треугольникдокажите что если соединить середины сторон равнобедренного треугольника то получится равнобедренный треугольник
Объяснение:
Дано: АВ; CD ┴ АВ; R - радіус описаного кола.
Побудувати: трикутник ABC.
Побудова:
1) Малюємо коло з центром у точці О (довільна точка) paдiycy R.
2) Позначаємо на колі довільну точку А.
3) Циркулем вимірюємо довжину відрізку а.
4) Будуємо коло з центром у точці А радіуса а.
5) Точка перетину двох кіл позначається В.
6) Будуємо серединний перпендикуляр до відрізку АВ.
7) F - точка перетину відрізка АВ i серединного перпендикуляра.
8) Вимірюємо циркулем довжину відрізку hb.
9) Малюємо дугу з центром у точці F радіуса hb.
10) Позначаємо точку перетину дуги та серединного перпендикуляра Е.
11) Проводимо через точку Е пряму а (а ‖ АВ).
12) Позначаємо точки перетину прямої а та кола С та D.
13) Будуємо відрізки AC, AD, BD, ВС.
∆АВС та ∆ABD шукані трикутники.
Задача може мати 4 розв'язки, коли на середньому перпендикулярі з двох сторін можна відкласти відрізки, які дорівнюютъ hb i провести через них прямі а та b (а ‖ АВ, b ‖ АВ). Ці прямі перетинають коло у 4 точках. Задача може мати 3 розв'язки, коли одна з прямих а чи b може бути дотичною. Задача може мати 2 розв'язки, коли a i b є дотичними, або тільки одна з прямих а чи b перетинає коло у двох точках. Задача може мати 1 розв'язок, коли а чи b буде дотичною до кола