Отметим точки в системе координат и соединим в прямую линию.(рекомендую считать третью точку для себя,например х=1 ,у=2,т.к две точки всегда соединятся в прямую, а три могут не соединиться, тогда надо искать ошибку в расчётах).
б)х=4.
Отмечаем по х точку 4 и проводим прямую,параллельную оси ОУ.При любых значениях У, х =4.
в)у= -3
Отмечаем по у точку -3 и проводим прямую,параллельную оси ОХ.При любых значениях Х , у = -3.
Кузнецов
25.05.2023
ответ: АВС=94 град Можно решить в двух вариантах.Можно решить в двух вариантах. В D А С Дано: ∆ АВС СD – биссектриса ∟АDС=112° ∟BCD=18° Найти: ∟ АВС = ? Решение: 1 вариант: ∆ АВС=180°= ∟ВАС+ ∟ АВС+ ∟ АСВ. Отсюда ∟ АВС = 180 – (∟ВАС+ ∟ АСВ) ∟BCD=∟АCD ∟ АСВ= ∟BCD+∟АCD Т.к. СD – биссектриса и делит ∟ АВС пополам, то ∟BCD=∟АCD=18°. Тогда ∟ АСВ=18+18=36°. ∟ВАС=∟DАC ∟DАC= 180 – (∟АCD+∟АDC)=180-(18+112)=50°. ∟ АВС=180-(50+36)=94° 2 вариант: ∟ АВС=∟CBD ∟CBD=180-(∟BCD+∟BDC) ∟BDC=180 -∟АDC (∟АDB –смежный угол) = 180-112=68° ∟CBD=180-(18+68)= 94°
serzhs869
25.05.2023
R1, r2, r3 - радиусы вписанных окружностей треугольников СНА, CНB и АВС соответственно. В прямоугольном тр-ке высота, опущенная из прямого угла, делит его на два подобных тр-ка, которые, в свою очередь, подобны главному тр-ку. Значит отношение радиусов вписанных окружностей равно отношению соответственных сторон треугольников. Пусть гипотенузы тр-ков СНА и CHВ равны: АС=5х и ВС=12х, тогда гипотенуза тр-ка АВС: АВ=√(АС²+ВС²)=√(5²х²+12²х²)=√169х²=13х. r1:r2:r3=АС:ВС:АВ=5х:12х:13х=5:12:13 ⇒ r3=13 см - это ответ.
а)приведём х+у-3=0 к стандартному виду:
у=3-х
(подставим,вместо х числа и посчитаем у):
при х=0, у=3-0= 3
при х=3, у=3-3= 0
Отметим точки в системе координат и соединим в прямую линию.(рекомендую считать третью точку для себя,например х=1 ,у=2,т.к две точки всегда соединятся в прямую, а три могут не соединиться, тогда надо искать ошибку в расчётах).
б)х=4.
Отмечаем по х точку 4 и проводим прямую,параллельную оси ОУ.При любых значениях У, х =4.
в)у= -3
Отмечаем по у точку -3 и проводим прямую,параллельную оси ОХ.При любых значениях Х , у = -3.