1. В прямоугольнике диагонали образуют треугольники, у которых углы при основании равны.
2. Угол BOC=AOD (как вертикальные); рассмотрим треугольник BOC: угол OBC=OCB, ВС=5 см. Т.к. в треугольнике сумма углов равна 180 градусам, то 180-60=120 гр, а 120:2=60 гр. Значит, OBC=OCB=60 гр., а треугольник BOC - равносторонний.
3. Треугольники BOC и AOD равны, т.к. угол BOC=AOD (как вертикальные), DAO=OCB=ADO=OBC (как внутренне накрест лежащие). BC=AD=BO=OC=AO=DO=5 см.
Значит, диагональ AC=DB (т.к. точка О середина пересечения диагоналей) = 10 см
ответ: AC=DB=10 cv
Поделитесь своими знаниями, ответьте на вопрос:
Ac= 6, 58 см, расстояние между центрами окружностей равно 6, 98 см. вычисли ed. !
У равнобедренного треугольника боковые стороны равны.
Пусть по 10 см будут боковые стороны, тогда основание должно быть равно: Р-(10+10)=50-20=30 (см).
Однако треугольник с такими сторонами: 10см,10см,30см не может существовать, поскольку одна его сторона - основание больше чем сумма двух других сторон: 30 >10+10.
Таким образом, 10 cм может быть только основание такого треугольника, значит ее боковые стороны (каждая) равны: (Р-10):2=20 (см)
ответ: две боковые стороны треугольника по 20см, основание - 10 см