info22
?>

Угол b равен углу c ab=cd, угл bao=cdo. докажите что треугольник aod равнобедренный​

Геометрия

Ответы

SEMENOV25352

ответ:всё в тетради

Объяснение:


Угол b равен углу c ab=cd, угл bao=cdo. докажите что треугольник aod равнобедренный​
MislitskiiSergei1403

\sqrt{8}ответ:

1. К

2. IV

3.  7 или -5

4. (0;0,5)

5. 2√73

6. (3√3; 1) или (-3√3; 1)

7. ромб

Объяснение:

1. Координаты точки К (3;0)

2. Координаты x>0, y<0 могут быть только в IV четверти

3.  АВ=10= \sqrt{(1-x)^{2}+(-5-3)^{2} } Приводим к квадратному уравнению x^{2} -2x-35=0. Решаем через дискриминант и получаем х1=7, х2=(-5)

4. Координаты этой точки, допустим М (0;у) Нужно найти у. Поскольку эта точка М равноудалена от точек Д и Е, то расстояние между ними одинаковое, то есть по формуле расстояния между точками находим расстояния между ДМ и ЕМ и приравниваем. Решаем уравнение \sqrt{(0-(-2))^{2}+(y-(-3))^{2} } =\sqrt{(0-4)^{2}+(y-1)^{2} } и получаем у=0,5

5. Координаты точек А(х;0), В(0;у) В формулу середины отрезка подставляем эти координаты и координаты точки М(-3;8): (-3)=(х+0)/2   х=(-6); 8=(0+у)/2   у=16. Теперь по формуле расстояния между точками находим расстояние между точками АВ и получаем АВ=2√73

6. Вершина В может быть или в 1й четверти, или во 2й четверти. По формуле расстояния между точками находим расстояние между точками А и С. Получаем 6. Поскольку ABC равносторонний треугольник, то АС=АВ=ВС=6. По формуле расстояния между точками находим расстояния между АВ и ВС и приравниваем. Решаем уравнение \sqrt{(x-0)^{2}+(y-4)^{2} } = \sqrt{(x-0)^{2}+(y+2)^{2} } и получаем у=1.

Подставляем значение у=1 в любую из сторон уравнения и получаем х1= 3\sqrt{3}, х2= -3\sqrt{3}

7. Если высчитать расстояние между точками, то есть стороны четырехугольника, то они равны: АВ=ВС=СД=АД=2\sqrt{10}. То есть это либо ромб, либо квадрат. Дальше высчитываем длину диагоналей тоже как расстояние между точками: АС=2\sqrt{8}, ВД=4\sqrt{8}. То есть диагонали не равны, значит это не квадрат, а ромб.

Ахмедшина Трубников1249

1. АА₁ - биссектриса,

ВВ₁ - медиана,

СС₁ - высота.

2. АВ = СВ,

∠АВЕ = ∠СВЕ,

ВЕ - общая сторона.

ΔАВЕ = ΔСВЕ по 1 признаку (по двум сторонам и углу между ними).

3. ∠ВАС = 180° - ∠1 по свойству смежных углов.

∠ВАС = 180° - 110° = 70°.

В равнобедренном треугольнике углы при основании равны, значит

∠ВСА = ВАС = 70°

∠BDC = 90°, так как в равнобедренном треугольнике медиана, проведенная к основанию, является высотой.

4. ОМ = ОК по условию,

∠DMO = ∠BKO по условию,

∠DOM = ∠BOK как вертикальные, значит

ΔDMO = ΔBKO по стороне и двум прилежащим к ней углам.

В равных треугольниках напротив равных сторон лежат равные углы, значит ∠MDO = ∠KBO, а так же OD = OB.

Треугольник DOB равнобедренный, значит углы при основании равны:

∠ODB = ∠OBD.

∠MDB = ∠MDO + ∠ODB

∠KBD = ∠KBO + ∠OBD, а так как  ∠MDO = ∠KBO и ∠ODB = ∠OBD, то

∠MDB = ∠KBD, т.е. ∠D = ∠B

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Угол b равен углу c ab=cd, угл bao=cdo. докажите что треугольник aod равнобедренный​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

seregina19706867
gusinica23
ismailovi670771
korj8
necit12
Анатольевич1707
semenovakotya577
yaudo47
alexanderpokrovskij6
Vova220
bondarenkoss
ooofishai4064
Ka-tja78
Bondarev_Ayupova795
Петренко1852