Объяснение:
Первое решение для учителя.
Радиус, проведенный в точку касания перпендикулярен касательной. Поэтому угол ОАС - прямой.
Тогда <OAB = <OBA = <OAC - <BAC = 90°-44°=46°
Второе решение для учителя, который хочет сложностей.
Рисунок у Вас есть, другого не нужно. Здесь особый интерес вызывает угол ВАС. Несмотря на то, что это угол между касательной и хордой, это вписанный угол (некоторые математики называют его вырожденным вписанным углом), который опирается на дугу АВ. Раз так, то угловая мера дуги АВ в два раза больше и равна 2*44 = 88°.
А угол ОАВ это стандартный центральный угол, который равен величине дуги, на которую опирается, то есть угол АОВ = 88°.
Треугольник АОВ - равнобедренный (две стороны ОА и ОВ радиусы), поэтому углы у основания ОАВ и ОВА = (180° - 88°)/2 = 46°
Поделитесь своими знаниями, ответьте на вопрос:
расписать подробно по второму признаку равенства треугольников
Количество диагоналей N у многоугольника легко вычислить по формуле:
N = n·(n – 3)/2,. где n — число вершин многоугольника,
тогда 20 = n·(n – 3)/2,
40 = n·(n – 3) ,
n² - 3n -40 = 0
n₁ =-5 ( не подходит по смыслу задачи)
n₂ = 8.
ответ: 8 сторон.