AB = CD так как трапеция равнобедренная, ∠ВАD = ∠CDA как углы при основании равнобедренной трапеции, AD - общая сторона для треугольников BAD и CDA, ⇒ ΔBAD = ΔCDA по двум сторонам и углу между ними.
Значит ∠CAD = ∠BDA. Тогда ΔOAD равнобедренный, прямоугольный, и его высота (ОН) является и медианой, проведенной к гипотенузе, значит, равна ее половине: ОН = AD/2
ΔВОС подобен ΔDOA по двум углам, значит и ОК = ВС/2
КН = AD/2 + BC/2 = (AD + BC)/2 ⇒ высота равна средней линии.
И вообще, в равнобедренной трапеции с перпендикулярными диагоналями высота равна средней линии трапеции (или полусумме оснований).
svetlanadianowa
17.01.2020
Рассмотрим треугольники авс и mnc. они подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны: - cn : cb = cm : ca = 9 : 12 = 12 : 16 = 3 : 4 (коэф. подобия 3/4); - угол с - общий для треугольников. у подобных треугольников соответственные углы вас и nmc равны. они являются также соответственными углами при пересечении двух прямых ав и mn секущей ас. используем один из признаков параллельности двух прямых: если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. значит, ab ii mn.
∠ВАD = ∠CDA как углы при основании равнобедренной трапеции,
AD - общая сторона для треугольников BAD и CDA, ⇒
ΔBAD = ΔCDA по двум сторонам и углу между ними.
Значит ∠CAD = ∠BDA.
Тогда ΔOAD равнобедренный, прямоугольный, и его высота (ОН) является и медианой, проведенной к гипотенузе, значит, равна ее половине:
ОН = AD/2
ΔВОС подобен ΔDOA по двум углам, значит и
ОК = ВС/2
КН = AD/2 + BC/2 = (AD + BC)/2 ⇒ высота равна средней линии.
Sabcd = (AD + BC)/2 · KH = KH · KH = 18² = 324 см²
И вообще, в равнобедренной трапеции с перпендикулярными диагоналями высота равна средней линии трапеции (или полусумме оснований).