треугольники авс и мвд подобны, т. к. углы равны. ав/мв=вс/вд=ас/мд=8/5.
значит ам/вм=3/5. сд/вд=3/5.
вм=5/3*3,9=6,5. вд=5/3*3,6=6
damir
26.10.2022
3 см Так как треугольник равносторонний, то все его стороны равны. АВ=ВС=АС=2√3Биссектриса в равностороннем треугольнике является медианой и высотой. Медиана ВН (она же биссектриса, она же высота) делит треугольник АВС на два треугольника. B AHC Рассмотрим треугольник АВН: Т. к ВН-биссектриса, то угол АВН=30° (т. к в равностороннем треугольнике все углы равны 60°).Треугольник АВН - прямоугольный (т. к ВН еще и высота). По св-ву прямоугольного треугольника, один из углов которого равен 30°:АВ - гипотенуза треугольника АВН. АН - катет, лежащий против угла в 30°.Значит, АН=1/2*АВАН=1/2*2√3АН=√3Теперь, по теореме Пифагора найдем сторону ВН. АВ2=ВН2+АН2(2√3)2=х2+(√3)2(√12)2=х2+312=х2+3 ==> х2=9 х=3ВН=3 см. ответ: ВН=3 см
os2854
26.10.2022
Смотрим образовавшийся прямоугольный (т.к. медиана в равностороннем треугольнике является и высотой, и биссектрисой) треугольник: Т.к. она является и биссектрисой, то угол поделится пополам, т.е. будет равен = 30. Дальше воспользуемся тригонометрией, а именно косинусом (напомню, косинус - отношение прилежащего катета к гипотенузе): cos 30=√3/2 √3/2=9√3/x √3х=18√3 х=18 (см) - сторона треугольника. Если есть желание, можешь расковырять через теорему Пифагора, обозначив второй катет за х, а гипотенузу за 2х. ответ получится абсолютно тот же.
6,5 и 6
Объяснение:
треугольники авс и мвд подобны, т. к. углы равны. ав/мв=вс/вд=ас/мд=8/5.
значит ам/вм=3/5. сд/вд=3/5.
вм=5/3*3,9=6,5. вд=5/3*3,6=6