Треугольник abc подобен треугольнику a1b1c1. площадь треугольника abc =32, площадь другого треугольника =50. сторона ba=4, найти b1a1. на фото- номер 10. , !
Мы можем видеть, что у углов АОЕ и ВОF имеется общая часть, угол ВОЕ.
Так как из условия "Углы АОЕ и ВОF на рисунке 45 равны", и мы вычтем из углов их общую чать, то получим, что угол ЕОF равен углу ВОА.
А так как ОВ и OE — биссектрисы углов АОС и DOF, то можем сделать вывод, что угол DOЕ равен углу СОВ.
Углы BОD и СОЕ можно представить как сумму общей для углов части, угол DOС с соответствующими углами СОВ и DOЕ. И так как угол DOЕ равен углу СОВ, следует, что углы BОD и СОЕ равны.
kuharchuks
11.11.2021
Треугольник BAD - равнобедренный с основанием BD, ведь его боковыми сторонами являются AB и AD, а они равны, т.к. все стороны ромба равны. Получается, что AC - биссектриса угла BAD, т.к. диагонали ромба (AC и BD) всегда пересекаются под прямым углом, а это значит, что AC - высота, проведенная к основанию равнобедренного треугольника, а она является также и биссектрисой. Получается, что угол BAD = 2* 28 = 56 градусов. Угол DCB = углу BAD, a угол CBA = углу CDA. => угол CBA = угол CDA = (360 - 2*56)/2 = (360 - 112) /2 = 248/2 = 124 ответ: величина тупого угла = 124 градуса
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Треугольник abc подобен треугольнику a1b1c1. площадь треугольника abc =32, площадь другого треугольника =50. сторона ba=4, найти b1a1. на фото- номер 10. , !
углы BОD и СОЕ равны
Объяснение:
Мы можем видеть, что у углов АОЕ и ВОF имеется общая часть, угол ВОЕ.
Так как из условия "Углы АОЕ и ВОF на рисунке 45 равны", и мы вычтем из углов их общую чать, то получим, что угол ЕОF равен углу ВОА.
А так как ОВ и OE — биссектрисы углов АОС и DOF, то можем сделать вывод, что угол DOЕ равен углу СОВ.
Углы BОD и СОЕ можно представить как сумму общей для углов части, угол DOС с соответствующими углами СОВ и DOЕ. И так как угол DOЕ равен углу СОВ, следует, что углы BОD и СОЕ равны.